File ~/usr5/zhigangx/matlab/MYBOX/Tidalpackage/Versionl/tidal_ellipse.tex

Date November 21, 2000

Ellipse Parameters Conversion and Vertical Velocity Profiles for Tidal

Currents

Zhigang Xu
Ocean Science Division, Fisheries and Oceans Canada
Bedford Institute of Oceanography

Dartmouth, Nova Scotia, Canada

November 21, 2000

Contents

1 Theory 3
1.1 Tidal ellipse and rotary components 3
1.2 Decoupling of the linear tidal momentum equations 7
1.3 Solutions to w, and w,, when v is depth invariant 8

2 Programs 11
2.1 apZep.m ... L. e e e e e 11
2.2 ep2ap.am e e e e e e 13
2.3 plotelllm . . .o 14
2.4 example.m . ..o L L e e 17
2.5 cBEpm.m e e e 18

Conversion between the tidal current amplitude and phase lag parameters (for short, referred to as
ap-parameters hereafter) and tidal current ellipse parameters (referred to as e-parameters hereafter)
is not as trivial as conversion between Cartesian and polar coordinates. We spend time to figure it
how to do so at one time and then forget it in a few months later (or shorter, my e-folding memory
scale is short, how long is yours?). I have just completed a tidal data assimilation project, in which I
have done tons of such conversions with a sketchy MATLAB program. Recently some my colleagues
inquired on how to do the conversion. Given that such inquiries are heard from time to time, I decided
to pull all the relevant material together in one place for convenience in our future work. The rest
of this document consists of two parts: a theory on the conversion and several MATLAB programs
(version 5 or higher).

As you will see, having gone through the rotary decomposition for tidal ellipse parameters, it would
be a waste if | did not go a step further for decoupling the linear tidal momentum equations, for the
setting for the two cases are the same, and any one who is interested in tidal ellipse parameters is
likely also interested in the tidal momentum equations. Having presented the decoupled momentum
equations, I might go another mile to present a solution for the equations. Thus, the main body of the
document consists 1) theories for the ellipse conversions and decoupling momentum equations, and 2)
programs for conversion between ap- and e- parameters (ap2ep.m and ep2ap.m) and for calculation of
vertical tidal current profiles (cBEpm.m) and the associated auxiliary programs. An example program
(example.m) is also included to demonstrate how to use ap2ep.m and ep2ap.m.

This document and associated programs are a revision of my first release made a few weeks ago
(you may regard that release as a beta-version if you already have down-loaded it). After that release,
I received good response from Dr. Rich Signell of U.S. Geological Survey, who not only debugged the
program but also gave me many good suggestions, especially on the designs of the notation for the
minus rotary components. I enjoyed discussions with him and would like to express my sincere thanks
to him. I also thank my colleague in BIO, Dr. Charles Hannah, for having a quick proofread of this
document.

One more bit before I get into the real business, in putting up the mathematics, I chose a way
that will make readers feel effortless in reading most of the derivations while still manage to keep the
document from being fat. This contrasts to some traditional treatments for expressing mathematics,

where readers are expected to read with pencils and scratch paper. If there is any one out there being

offended by seeing too much details, please forgive me!

1 Theory

1.1 Tidal ellipse and rotary components

Given tidal currents of u- (east or x-) and v- (north or y-) components, as

U = aycos(wt — ¢y) (1)

v o= a,cos(wt — ¢y) (2)

where a,, and ¢, are the amplitudes and phase lags for the u-components and likewise for a, and ¢,,

and w is the tidal angular frequency, we can form a complex tidal current w as
w = u+iv (3)

where i = /—1. If we trace w on a complex plane as time goes by a period (T=27/w), we will see
an ellipse. Our interest here is not only in seeing the ellipse, but also would like have the following

ellipse parameters calculated:
e Maximum current velocity or semi-major axis (referred to as SEMA hereafter where appropriate).

e Eccentricity (ECC), the ratio of semi-minor to semi major axis, negative values indicating that

the ellipse is traversed in a clockwise rotation;
e Inclination (INC), or angle between east (x-) and semi-major axis;

e Phase angle (PHA), i.e., the time of maximum velocity with respect to a chosen origin of time

(if the phase lag is relative to Greenwich time, then the time will be also the Greenwich time).

Let us continue from eq. 3:

w = u-41w

= aycos(wt — ¢,) + 1a, cos(wt — ¢,)

ei("‘“‘_ﬁbu) + e_i(‘“t_ﬁbu) . ei(‘ﬂt_(bv) + e_i(‘“t_(bv)
= ay + a0y
2 2
_ aue_wu ‘; @.ave_wv eiwt + auel¢u ‘; iavewv e—iwt (4)

1'st ellipse

-15 -1 -0.5 0 0.5 1 15

Figure 1: An ellipse can be constructed by two opposite rotating circles (red: anti-clockwise circle,
green: clockwise circle, blue: ellipse). The circle with a longer radius dictates the rotating direction

of the ellipse.

_ wpeiwt_}_,wme—i‘ﬂt (5)
or Wpei(wt-}—é’p) + Wme—i(‘ﬂt—em) (6)

where we have introduced a complex conjugate operator notation *, and

U+ 10

w, = Wye'r = 5 (7)
wn = Woen = (L2 0
i = aye ' (9)

b o= aye”? (10)

% and © are known as u- and v- complex amplitudes respectively, and the minus signs in the above
definitions mean that positive (negative) algebraic values of ¢, and ¢, themselves represent phase lags
(leads) — a tidal convention.

Thus, we have decomposed an ellipse into two circular components: the term with e*“* in eq. 4
(or eq. 6) describes an anti-clockwise circle with a radius of W),, and the term with e** describes a
clockwise circle with a radius of W,, (figure 1). Depending on whether W), is greater than, equal to

or less than W,,, the ellipse will traverse either anti-clockwise, rectilinear, or clockwise.

When the two circular components are aligned in the same direction, the tidal current will reach

its maximum. From, eq. 6, we can see that will happen when
wt+0, = —wt+ 0, +2kr (11)

where integer £ = 0,£1,£2,4£3,---. Denote t,,4, as a ¢t satisfying the above criterion, then the phase

angle as introduced above is wt,,,;, which is given by

6, —0
PHA = wtgr = 5 P4 kr (12)

We need only to take its minimum value (i.e., when k = 0).

Substitute eq. 12 into eq. 6, we can have a current vector whose length is maximum,

Wynaz — Wpel((ﬂtma.r‘i‘ep) _I_ Wme_Z(tha.r_em)

() gy ()

O+ 6p

= (W, +Wy,)e' 2 I L | (13)

Thus, the maximum current, or semi-major axis (SEMA), is
SEMA = |wyee] = W, + W, (14)

and its direction, or the inclination, is

6, +0
INC = arg(wmas) = ;p. (15)

When the two circular components are aligned in opposite directions, i.e.,
wt+0, = —wt+0,+ (2k+)7 (16)

then the tidal current reaches minimum in its speed. At this time, t = t,,;,

6, —0 1
Whinin = 5 P+ (k+ 5)71' (17)

and

(=4) (gt i)

Wmin = Wpe + Wye

= IVpei(em;%) €% + meei<9m2+9p) e '3

{6 6.
z($+§)

= Wy+Wpe M)e

(omtop x
— (Wp—Wm)e(#e4) (18)

therefore, the minimum speed of the tidal current, or semi-minor axis (SEMI) is

SEMI = |wpin| = W, — W, (19)
and its angle is
0, +0 T
arg(Wmin) 5 L4 5 (20)

Thus, the eccentricity, ECC, is

SEMI W, — W,

BCC = -
cC SEMA — W, + W,

(21)

When W, > W,, ECC is negative and the ellipse rotates clock-wisely.

The above is the conversion from ap-parameter to e-parameter. Now consider the inverse: given
the four e-parameters of SEMA, ECC, INC, and PHA, how can we recover ap-parameters of a,, ¢,
a, and ¢,7

As a middle step, we need to recover W, 8, w,, W,,, 8,, and w,,. From eqs. 14, 19 and 21, we

can have
W, = %SEMA (22)
1-E
W, = TCCSEMA (23)

and from eqs. 12 (when £ = 0) and 15, we can have

6, = INC—-PHA (24)
6,, = INC+PHA (25)
Hence we can know
w, = Wye ' (26)
W, = Wpelm (27)

We then can know further from eqs. 7 ~ 10 that

aye” = w, +wl, (28)
' 1

ae”t = 2 (w, —w},) (29)
i

R (30)

So,

a, = |w,+ wyl

¢u = —arg(wy+ wpn)
and,

ay = |(w, —wp)

b = —amg <M)

1

1.2 Decoupling of the linear tidal momentum equations

Consider
D g g 0 (0
ot v g(?x 0z y@z
v B on 0 [Ov
E—I—fu = _g()_y—l_&(V&)

(31)

(34)

(35)

where all the variables are real and other notations are hopefully standard to you. By adding eq. 34

and ¢X eq. 35, and using w defined by eq. 3, we can merge the above two equations into the following

complex one,

8_w_|_ f — _|_i< 8_71))
ot Y= gV Jdz V@z
where

Vo= 5 Zay'

Assume u and v of the forms given in egs. 1 and 2, and similarly for 7, i.e.,
n = aycos(wt— @)

which can be split into two circular parts as we did for u and v,

n = aycos(wt — @)
_ aye” ' vt 4 aye'n it
2 2

_ twt —iwt
- 77p€ + me 9

(36)

(37)

(39)

where the tidal convention to define a complex variable is used again, i.e.,

—16
a,e
T]p = . 2 (40)
10
a,e'’n
n 5 (41)
& 77;. (42)

Using the above equation and eqs. 5 we can rewrite eq. 36 as

Ow,

0z

i(f+w)wp+gv7’7p—i<’/ >]€M+[i(f—w)mergv%—%(Va;;m)]e_i“’t = 0 (43)

0z

Since e™! and e~ are linearly independent of each other, for the above equation to hold, their

coefficients must be zero, i.e.,

. g ([0

i+, = g v+ (v52), (44)
. 0 ow,y,

i =wom = —g 7+ 5 (552, (45)

In the literature, you may find the following form of equation for w,,,

—i(f—ww, = —gv*npﬁ-ﬁ(Vaw:”). (46)

0z 0z

(where the conjugate signs on w,, may then be dropped) Eqs. 45 and 46 are equivalent, for they can

be obtained from taking conjugate on each other.

1.3 Solutions to w, and w,, when v is depth invariant

Subject the decoupled equations of 44 and 45 to the following boundary conditions

8(wp7wm) . .

y)~ (0,0) atz=0 (47)

VW = /{(wpvwm) at z = —h(x,y) (48)
z

where £ is a bottom frictional parameter. The adoption of this parameter allows us to accommodate
two types of bottom conditions: 1) slip conditions: (wy,wy,),__, # (0,0), this is achieved by setting
K as a finite but non-zero number, in this case, if there is, and shall be, a certain size of bottom stress,
there will be non-zero bottom velocities, which means flows are allowed to have motion relative to the

“bottom” (in this case, the bottom is understood as the top of the bottom boundary log-layer); 2)

sticky bottom conditions, i.e., (w,, wy,) __, = (0,0), in this case flow is not allowed to have motion
relative to the bottom (the real sea bottom), this condition can be achieved by setting « to be infinitely
large.

The solutions to w, and w,, can be found as

w, = BE, v (49)
w, = BE, YV (50)
where the two-letter variables BE, and BE,, stand for two Bottom Ekman spirals in rotating compo-

nents, they spiral near the bottom (just like wind driven surface Ekman spirals near the sea surface)

and approach to geostrophic flow in the interior. Their details are expressed in the following:

g cosh az
BE = - 1-— 1
p(2,9,2) va? [cosh ah 4+ 2% sinh ah] (51)
h
BEn(2,y,2) = _% 1— cos ﬁﬁz (52)
vp cosh Bh + 2 sinh Sk
where

141 o

- 14—
o 3. + 7 (53)

141 Ie]
= 1—= 4
b= -2 54

2
5. = 7 (Ekman depth). (55)
The solution to eq. 46 is simply as

w, = BEL v n (56)

where BE” is the conjugate of BE,, given by eq. 52. (Also note function cosh has a property of
(cosh az)* = cosh(a*z)).

As f — o, f — 0 and BE,, becomes indefinite (0/0 type). This can be the situation for the
northern hemisphere, as I have been encountered with recently in my Canadian Arctic archipelago Mj
tidal data assimilation project. Similar concern exist for BE, for the southern hemisphere where f+4o
(hence) can be zero. This type singularity may be referred as inertial frequency singularity. The

singularity is not essential but we have to remove it before we can feed the formula into the computer,

for otherwise the computer will generate garbage since there are only limited significant numbers used

in a computer. This can be done by expanding eqs. 53 and 54 in power series:

> —(z/h ah)?—?
BE,(z,y,2) = C; [%+] E%)_ i (57)

o |1 - (2/h) (Bh)*2
BEm(z,y,2) = Dt:1 [T—I—] Q=1 (58)

where
gh? 2e—ah

¢ = _V(l—}—%tanhah) 1+ e—20h (59)
D - _ gh? 2e=Ah (60)

v (1 + ﬁk—” tanh ﬁh) 14 e-26k

Assume the ocean depth, h, is always finite and let us now consider a case where ah — 0, which will

arises when either or both i) f — —o or ii) ¥ — oo happens. In this limiting case,

. _ {Q% 4 gk when v is finite
lim BE,(z,y,2) = Y " (61)
o P h .. .
a —9? when v is infinite
Likewise,
. _ g —Z + gh when v is finite
élglo BEwm(z,y,2) = A (62)

- when v is infinite

Thus we have resolved the apparent inertial frequency singularity.

If use the ratio test, we will see that the radii of convergence of the two series are infinite. Hence
for any significantly large values of ah and (h, the series of eqs. 57 and 58 will converge to the same
values of its finite forms of eqs. 51 and 52. However we might use the finite forms themselves for
the sake of convergence rate. A MATLAB program, called ¢cBEpm, is listed in the following section
for calculating BE, and BE,,. You will see in that program that when |ah| is less than 1, the series
form is used, otherwise, the finite form is used. (Even when ah goes up to 10, experiments show the
series converges fast enough.) Why is it named as ¢cBEpm? This is because I have lived with the
combination of eqs. 44 and 45 and have made a program called BEpm and used it everywhere for
calculating BE, and BE},. So to me “c” in cBEpm means conjugate, but to you it may be interpreted
as a reminder that BEp and BEm are complex valued. (You do not want to punish me by modifying

many of my other programs, do you?).

10

2 Programs

Three programs are included here: ap2ep.m, which converts ap-parameters to e-parameters, ep2ap.m
which is the inverse of ap2ep.m, and ¢cBEpm.m for calculating the bottom Ekman spirals (BE, and

BE,,). See the comments in the programs for more details.

2.1 ap2ep.m

function [SEMA, ECC, INC, PHA, wl=ap2ep(Au, PHIu, Av, PHIv, plot_demo)

%

% Convert tidal amplitude and phase lag (ap-) parameters into tidal ellipse
% (e-) parameters. Please refer to ep2ap for its inverse function.

%

% Usage:

%

% [SEMA, ECC, INC, PHA, wl=ap2ep(Au, PHIu, Av, PHIv, plot_demo)

%

% where:

%

% Au, PHIu, Av, PHIv are the amplitudes and phase lags (in degrees) of
% u- and v- tidal current components. They can be vectors or

% matrices or multidimensional arrays.

%

% plot_demo is an optional argument, when it is supplied as an array
% of indices, say [i j k 1], the program will plot an ellipse

% corresponding to Au(i,j, k, 1), PHIu(i,j,k,1), Av(i,j,k,1), and

% PHIv(i,j,k,1);

%

% Any number of dimensions are allowed as long as your computer

% resource can handle.

%

% SEMA: Semi-major axes, or the maximum speed;

% ECC: Eccentricity, the ratio of semi-minor axis over

% the semi-major axis; its negative value indicates that the ellipse
% is traversed in clockwise direction.

% INC: Inclination, the angles (in degrees) between the semi-major
% axes and u-axis.

% PHA: Phase angles, the time (in angles and in degrees) when the

% tidal currents reach their maximum speeds, (i.e.

% PHA=omega*tmax) .

%

% These four e-parameters will have the same dimensionality

11

% (i.e., vectors, or matrices) as the input ap-parameters.

% W Optional. If it is requested, it will be output as matrices
% whose rows allow for plotting ellipses and whose columns are
% for different ellipses corresponding columnwise to SEMA. For
% example, plot(real(w(1,:)), imag(w(1,:))) will let you see

% the first ellipse. You may need to use squeeze function when
% W is a more than two dimensional array. See example.m.

% Document: tidal_ellipse.ps

if nargin < 5
plot_demo=0; Y% by default, no plot for the ellipse

end

% Assume the input phase lags are in degrees and convert them in radians.
PHIu = PHIu/180%pi;
PHIv = PHIv/180%pi;

% Make complex amplitudes for u and v

sqrt(-1);

-
[}

u = Au.*exp(-i*PHIu);

Av.*exp(-i*PHIvV);

<
[}

% Calculate complex radius of anticlockwise and clockwise circles:

wp = (utix*v)/2; % for anticlockwise circles
wm = conj(u-i*v)/2; Y% for clockwise circles

% and their amplitudes and angles
Wp = abs(wp);
Wm = abs(¥m) ;

THETAp = angle(wp);
THETAm = angle(wm);

% calculate e-parameters (ellipse parameters)

SEMA = Wp+im; % Semi Major Axis, or maximum speed
SEMI = Wp-Wm; % Semin Minor Axis, or minimum speed
ECC = SEMI./SEMA; % Eccentricity

PHA = (THETAm-THETAp)/2; Y% Phase angle, the time (in angle) when

% the velocity reaches the maximum

INC (THETAm+THETAp)/2; % Inclination, the angle between the
% semi major axis and x-axis (or u-axis).
% convert to degrees for output

PHA = PHA/pi*180;

12

INC = INC/pi*180;

THETAp = THETAp/pi*180;

THETAm = THETAm/pi*180;

% flip THETAp and THETAm, PHA, and INC in the range of

% [-pi, 0) to [pi, 2*pi), which at least is my convention.

id THETAp < O; THETAp(id) = THETAp(id)+360;
id = THETAm < O; THETAm(id) = THETAm(id)+360;
id = PHA < 0O; PHA(id) = PHA(id)+360;

id = INC < 0O; INC(id) = INC(id)+360;
if nargout ==

ndot=36;

dot=2*pi/ndot;

ot=[0:dot:2%pi-dot];

w=wp(:)*exp(i*ot)+um(:)*exp(-i*ot);

w=reshape(w, [size(Au) ndot]);

end
if any(plot_demo)

plot_el1(SEMA, ECC, INC, PHA, plot_demo)

end

2.2 ep2ap.m

function [Au, PHIu, Av, PHIv, w]l=ep2ap(SEMA, ECC, INC, PHA, plot_demo)
% Convert tidal ellipse parameters into amplitude and phase lag parameters.
% Its inverse is ap2ep.m. Please refer to ap2ep for the meaning of the

% inputs and outputs.

% Zhigang Xu
% 0ct. 20, 2000

% Document: tidal_ellipse.ps
if nargin < 5
plot_demo=0; Y% by default, no plot for the ellipse

end

Wp = (1+ECC)/2 .*SEMA;

13

Wm = (1-ECC)/2 .*SEMA;
THETAp = INC-PHA;
THETAm = INC+PHA;

%convert degrees into radians
THETAp = THETAp/180%pi;

THETAm = THETAm/180%pi;

%Calculate wp and wm.

wp = Wp.*exp(i*THETAp) ;

wm = Wm.*exp(i*THETAm) ;
if nargout ==
ndot=36;
dot = 2*pi/ndot;
ot = [0:dot:2*pi-dot];
w = wp(:)*exp(i*ot)+wm(:)*exp(-i*ot);

w=reshape(w, [size(wp) ndot]);

end

% Calculate cAu, cAv --- complex amplitude of u and v
chAu = wp+conj(wm);

cAv = -i*(wp-conj(wm));

Au = abs(cAu);

Av = abs(cAv);

PHIu = -angle(cAu)*180/pi;

PHIv = -angle(cAv)#*180/pi;

% flip angles in the range of [-180 0) to the range of [180 360).
id = PHIu < O; PHIu(id) = PHIu(id) + 360;
id = PHIv < 0; PHIv(id) = PHIv(id) + 360;

if any(plot_demo)
plot_el1(SEMA,ECC,INC,PHA,plot_demo)

end

2.3 plot_ell.m

function w=plot_ell(SEMA, ECC, INC, PHA, IND)
%
% An auxiliary function used in ap2ep and ep2ap for plotting tidal ellipse.

% The inputs, MA, ECC, INC and PHA are the output of ap2ep and IND is a

14

% vector for indices for plotting a particular ellipse, e.g., if IND=[2 3 1];

% the ellipse corresponding to the indices of (2,3,1) will be plotted.

Size_SEMA=size(SEMA);
len_IND=length(IND);
if IND
cmd=[’sub2ind(size_SEMA’];
if len_IND==
titletxt=[’Ellipse ’];
else
titletxt=[’Ellipse (’];

end

for k=1:1en_IND;
cmd=[cmd ’,’num2str (IND(k))];
if k<len_IND
titletxt=[titletxt num2str(IND(k)) ’,’];
elseif len_IND==
titletxt=[titletxt num2str(IND(k))];
else
titletxt=[titletxt num2str(IND(k)) ’)°’];
end

end

cmd=[’n=’> cmd ’);’];

eval(cmd) ;

figure(gct)
clf
do_the_plot(SEMA(n), ECC(n), INC(n), PHA(n));
title(titletxt);

elseif len_IND
msgl=[’IND input contains zero element(s)!’];
msg2=[’No ellipse will be plotted.’];
disp(msgl);
disp(msg2);

end

%begin of plot subfunction

function w=do_the_plot(SEMA, ECC, INC, PHA)

15

SEMI = SEMA.*ECC;

Wp = (1+ECC)/2 .*SEMA;

Wm

(1-ECC)/2 .*SEMA;
THETAp = INC-PHA;
THETAm = INC+PHA;

Y%convert degrees into radians
THETAp = THETAp/180%pi;
THETAm = THETAm/180%pi;

INC = INC/180%pi;

PHA = PHA/180%pi;

%Calculate wp and wm.

wp = Wp.*exp(i*THETAp) ;

wm = Wm.*exp(i*THETAm) ;

dot = pi/18;

ot = [0:dot:2%pi-dot];

a = wp*exp(i*ot);

b

wm¥exp(-i*ot);

W = atb;

wmax = SEMA*exp(i*INC);

wmin = SEMI*exp(i*(INC+pi/2));
plot(real(w), imag(w))

axis(’equal’);

hold on

plot ([0 real(wmax)], [0 imag(wmax)], ’'m’);
plot ([0 real(wmin)], [0 imag(wmin)], ’m’);
xlabel(’u’);

ylabel(’v?);

plot(real(a), imag(a), ’r’);

plot(real(b), imag(b), ’g’);

hnd_a=1ine([0 real(a(1))], [0 imag(a(1))], ’color’, ’r’,

‘marker’

,70%);

hnd_b=1ine([0 real(b(1))]1, [0 imag(b(1))], ’color’, ’g’, ’marker’,’o’);

hnd_w=1ine([0 real(w(1))], [0 imag(w(1))], ’color’, ’b’, ’marker’,’o0’);

plot(real(a(1)), imag(a(1)), ’ro?);
plot(real(b(1)), imag(b(1)), ’go’);
plot(real(w(1)), imag(w(1)), ’bo?);

hnd_ab=line(real([a(1) a(1)+b(1)]), imag([a(l) a(1)+b(1)]), ...

’linestyle’, ’--’, ’color’, ’g’);

hnd_ba=line(real([b(1) a(1)+b(1)]), imag([b(1) a(1)+b(1)]), ...

’linestyle’, ’--?, ’color’, ’r’);

for n=1:length(ot);
set(hnd_a, ’xdata’, [0 real(a(n))], ’ydata’, [0 imag(a(n))]);
set(hnd_b, ’xdata’, [0 real(b(n))], ’ydata’, [0 imag(b(n))]);
set(hnd_w, ’xdata’, [0 real(w(n))], ’ydata’, [0 imag(w(n))]);

hold on

plot(real(a(n)), imag(a(n)), ’ro’);
plot(real(b(n)), imag(b(n)), ’go’);
plot(real(w(n)), imag(w(n)), ’bo?);
set(hnd_ab, ’xdata’,real([a(n) a(n)+b(n)]), ’ydata’,
imag([a(n) a(n)+b(n)]1))
set(hnd_ba, ’xdata’,real([b(n) a(n)+b(n)]), ’ydata’,
imag([b(n) a(n)+b(n)1))

end
hold off

%end of plot subfunction

2.4 example.m

%demonstrate how to use ap2ep and ep2ap

Au=rand(4,3,2); % so 4x3x2 multi-dimensional matrices are used for the
Av=rand(4,3,2); % demonstration.
Phi_v=rand(4,3,2)*360; Y% phase lags inputs are expected to be in degrees.

Phi_u=rand(4,3,2)*360;

figure(1)
clf
[SEMA ECC INC PHA w]=ap2ep(Au, Phi_u, Av, Phi_v, [2 3 1]);

figure(2)
clf
[rAu rPhi_u rAv rPhi_v rw]l=ep2ap(SEMA, ECC, INC, PHA, [2 3 1]1);

%check if ep2ap has recovered Au, Phi_u, Av, Phi_v

max (max (max (abs (rAu-Au)))) % = 9.9920e-16
max (max (max (abs (rAv-Av)))) % = 6.6613e-16

17

max (max (max (abs (rPhi_u-Phi_u)))) % = 4.4764e-13
max (max (max (abs (rPhi_v-Phi_v)))) % = 1.1369e-13
max (max (max (max (abs(w-rw))))) % = 1.3710e-15
% for the random realization I had, the differences are listed on the right

% hand of the above column. What are yours?

% The above example function calls have already plotted an ellipse for you.
% To plot an ellipse separately, you may do

%

figure(3)

clf

plot(real(squeeze(w(2,3,1,:))), imag(squeeze(w(2,3,1,:))));

%here squeeze is needed because w is a multiple dimensional array.

2.5 cBEpm.m

function [BEp, BEm]=cBEpm(g, f, sigma, nu, kappa, z, h)

%

%Evaluate the theoretical vertical profiles (or Bottom Ekman spiral profiles)
%of tidal currents in the two rotary directions driven by half-unit of sea
%surface gradients in the two directions respectively. Eddy viscosity is
%assumed as vertically invariant. See tidal_ellipse.ps for more details.

%

%

%inputs:

%

% g, the gravity acceleration,

% f, the Coriolis parameter,

% nu, the eddy viscosity

% kappa, the bottom frictional coefficient

% z, the vertical coordinates, can be a vector but must be
% within [0 -h];

% h, the water depth, must be positive.

%

% Note: except for z, all other inputs must be scalars.
%

%outputs:

%
% BEp and BEm, the same dimensions of z, the outputs for the vertical

% velocity profiles driven respectively by a unit of sea

18

% surface slope in the positive rotation direction and negative

% rotation direction for when the eddy viscosity is vertically
% invariant. See the associated document for more details.
if length(g)>1 | length(f)>1 | length(sigma)>1

length(nu)>1 | length(kappa)>1 | length(h)>1
error(’inputs of g,f,sigma, nu, kappa, and h should be all scalars!’)

end

if any(z/h>0) | any(z/h<-1)
disp(’z must be negative and must be within [0 -h]’)

end

delta_e = sqrt(2*nu/f); Y%Ekman depth

alpha = (1+i)/delta_e*sqrt(1+sigma/f);

beta (1+i)/delta_e*sqrt(i-sigma/f) ;

BEp = get_BE(g, alpha, h, z, nu, kappa);
BEm

get_BE(g, beta, h, z, nu, kappa);

%subfunction

function BE=get_BE(g, alpha, h, z, nu, kappa)

z = z(:);
z_h = z/h;
ah = alpha*h;
az = alpha*z;
ah2 = ah*2;
anu_k = alpha*nu/kappa;

nu_kh = nu/(kappa*h) ;

if abs(ah) < 1 %series solution
T = 10;
C = -g*h*h/(nu*(1+anu_k*tanh_v5_2(ah)))*2;
A1l = (1-z_h.*z_h)/2+nu_kh;
B1

exp(-ah)/(1+exp(-ah?2));
B = B1;

series_sum=A1%B1;

for t = 2:T;

t2=2%t;

19

A = (1-z_h."t2)./t2+nu_kh;

o]
[}

B*ah*ah/ (t2-1)/(t2-2);
series_sum = series_sum+A*B;

end

BE = C*series_sum;

else %finite solution

¢ = -gxh*h/nu;
denom=(exp(az-ah)+exp(-(az+ah))) ./ (1+exp(-2*ah));
% =cosh(az)/cosh(ah);
%but this a better way to evaluate it.
numer=1+anu_k*tanh_v5_2(ah);
BE = c*((1-denom/numer)/(ah*ah));

end

%end of subfunction

%

%Hote tanh_v5_2 is a copy of tanh from Matlab v5.2, which has worked well!
%It seems that Matlab v5.3 has some bug(s) in tanh function! It cannot deal
%with large argument. try z=7.7249e02%(1+i), tanh(z) and tanh_v5_2(z) to

%see the difference.

20

