
NetCDF User’s Guide for Fortran 90
An Access Interface for Self-Describing, Portable Data

Version 3.5
March 2002

Russ Rew, Unidata Program Center, and
Robert Pincus, NOAA/CIRES Climate Diagnostics Center

Copyright © 2002 University Corporation for Atmospheric Research, Boulder, Colorado.

Permission is granted to make and distribute verbatim copies of this manual provided that the
copyright notice and these paragraphs are preserved on all copies. The software and any accompa-
nying written materials are provided “as is” without warranty of any kind. UCAR expressly dis-
claims all warranties of any kind, either expressed or implied, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an endorse-
ment by the Unidata Program Center. Unidata does not authorize any use of information from this
publication for advertising or publicity purposes.

Chapter : i
NetCDF User’s Guide for Fortran 90

1 Introduction . 1
1.1 The NetCDF Interface . 1
1.2 NetCDF Is Not a Database Management System . 1
1.3 File Format . 2
1.4 What about Performance? . 2
1.5 Is NetCDF a Good Archive Format? . 3
1.6 Creating Self-Describing Data conforming to Conventions 3
1.7 Background and Evolution of the NetCDF Interface 3
1.8 What’s New Since the Previous Release? . 5
1.9 Limitations of NetCDF . 5
1.10 Future Plans for NetCDF . 7

2 Components of a NetCDF Dataset . 9
2.1 The NetCDF Data Model . 9

2.1.1 Naming Conventions . 9
2.1.2 Network Common Data Form Language (CDL) 9

2.2 Dimensions . 10
2.3 Variables . 11

2.3.1 Coordinate Variables . 12
2.4 Attributes . 13
2.5 Differences between Attributes and Variables . 14

3 Data . 15
3.1 NetCDF external data types . 15
3.2 Data Access . 16

3.2.1 Forms of Data Access . 16
3.2.2 An Example of Array-Section Access . 17
3.2.3 More on General Array Section Access . 18

3.3 Type Conversion . 19
3.4 Data Structures . 20

4 Use of the NetCDF Library . 23
4.1 Creating a NetCDF Dataset . 23
4.2 Reading a NetCDF Dataset with Known Names . 24
4.3 Reading a netCDF Dataset with Unknown Names . 25
4.4 Writing Data in an Existing NetCDF Dataset . 26
4.5 Adding New Dimensions, Variables, Attributes . 27
4.6 Error Handling . 28
4.7 Compiling and Linking with the NetCDF Library . 28

5 Datasets . 29

ii
5.1 NetCDF Library Interface Descriptions . 29
5.2 Get error message corresponding to error status: NF90_STRERROR 30
5.3 Get netCDF library version: NF90_INQ_LIBVERS 30
5.4 Create a NetCDF dataset: NF90_CREATE . 31
5.5 Open a NetCDF Dataset for Access: NF90_OPEN . 33
5.6 Put Open NetCDF Dataset into Define Mode: NF90_REDEF 34
5.7 Leave Define Mode: NF90_ENDDEF . 35
5.8 Close an Open NetCDF Dataset: NF90_CLOSE . 37
5.9 Inquire about an Open NetCDF Dataset: NF90_Inquire 38
5.10 Synchronize an Open NetCDF Dataset to Disk: NF90_SYNC 39
5.11 Back Out of Recent Definitions: NF90_ABORT . 40
5.12 Set Fill Mode for Writes: NF90_SET_FILL . 41

6 Dimensions . 45
6.1 Create a Dimension: NF90_DEF_DIM . 45
6.2 Get a Dimension ID from Its Name: NF90_INQ_DIMID 46
6.3 Inquire about a Dimension: NF90_Inquire_Dimension 47
6.4 Rename a Dimension: NF90_RENAME_DIM . 49

7 Variables . 51
7.1 Language Types Corresponding to NetCDF External Data Types 51
7.2 Create a Variable: NF90_DEF_VAR . 52
7.3 Get a Variable ID from Its Name: NF90_INQ_VARID 54
7.4 Get Information about a Variable from Its ID: NF90_Inquire_Variable 54
7.5 Writing Data Values: NF90_PUT_VAR . 56
7.6 Reading Data Values: NF90_GET_VAR . 61
7.7 Reading and Writing Character String Values . 66
7.8 Fill Values . 67
7.9 Rename a Variable: NF90_RENAME_VAR . 67

8 Attributes . 69
8.1 Attribute Conventions . 69
8.2 Create an Attribute: NF90_PUT_ATT . 72
8.3 Get Information about an Attribute: NF90_Inquire_Att and

NF90_INQ_ATTNAME 74
8.4 Get Attribute’s Values: NF90_GET_ATT . 76
8.5 Copy Attribute from One NetCDF to Another: NF90_COPY_ATT 77
8.6 Rename an Attribute: NF90_RENAME_ATT . 79
8.7 Delete an Attribute: NF90_DEL_ATT . 80

9 NetCDF File Structure and Performance . 83
9.1 Parts of a NetCDF File . 83
9.2 The Extended XDR Layer . 84
9.3 Large File Support . 84

Chapter : iii
9.4 The I/O Layer . 85
9.5 UNICOS Optimization . 86

10 NetCDF Utilities . 89
10.1 CDL Syntax . 89
10.2 CDL Data Types . 91
10.3 CDL Notation for Data Constants . 92
10.4 ncgen . 93
10.5 ncdump . 94

11 Answers to Some Frequently Asked Questions . 99

Appendix A Units . 105

Appendix B File Format Specification . 107

Appendix C Summary of Fortran 90
Interface 113

Appendix D FORTRAN 77 to Fortran 90 Transition Guide 117

Index for Fortran 90 . 119

iv

Foreword v
Foreword
Unidata is a National Science Foundation-sponsored program empowering U.S. universities,
through innovative applications of computers and networks, to make the best use of atmospheric
and related data for enhancing education and research. For analyzing and displaying such data,
the Unidata Program Center offers universities several supported software packages developed by
other organizations. Underlying these is a Unidata-developed system for acquiring and managing
data in real time, making practical the Unidata principle that each university should acquire and
manage its own data holdings as local requirements dictate. It is significant that the Unidata pro-
gram has no data center—the management of data is a “distributed” function.

The Network Common Data Form (netCDF) software described in this guide was originally
intended to provide a common data access method for the various Unidata applications. These
deal with a variety of data types that encompass single-point observations, time series, regularly-
spaced grids, and satellite or radar images.

The netCDF software functions as an I/O library, callable from C, FORTRAN, Fortran 90, C++,
Java, Perl, Python, or other languages for which a netCDF library is available. The library stores
and retrieves data in self-describing, machine-independent datasets. Each netCDF dataset can
contain multidimensional, named variables (with differing types that include integers, reals, char-
acters, bytes, etc.), and each variable may be accompanied by ancillary data, such as units of mea-
sure or descriptive text. The interface includes a method for appending data to existing netCDF
datasets in prescribed ways, functionality that is not unlike a (fixed length) record structure. How-
ever, the netCDF library also allows direct-access storage and retrieval of data by variable name
and index and therefore is useful only for disk-resident (or memory-resident) datasets.

NetCDF is designed to:

• Facilitate the use of common datasets by distinct applications.

• Permit datasets to be transported between or shared by dissimilar computers transparently,
that is, without translation.

• Reduce the programming effort usually spent interpreting formats.

• Reduce errors arising from misinterpreting data and ancillary data.

• Facilitate using output from one application as input to another.

• Establish an interface standard that simplifies the design of new software for accessing geo-
science data.

A measure of success has been achieved. NetCDF is now in use on computing platforms that
range from personal computers to supercomputers and include most UNIX-based workstations. It
can be used to create a complex dataset on one computer (say in FORTRAN) and retrieve that
same self-describing dataset on another computer (say in C) without intermediate translations—
netCDF datasets can be transferred across a network, or they can be accessed remotely using a

vi
suitable network file system or other remote access protocol.

Because we believe that the use of netCDF access in non-Unidata software will benefit Unidata’s
primary constituency—such use may result in more options for analyzing and displaying Unidata
information—the netCDF library is distributed without licensing or other significant restrictions,
and current versions can be obtained via anonymous FTP. Apparently the software has been well
received by a wide range of institutions beyond the atmospheric science community, and a sub-
stantial number of open source and commercial data analysis systems can now accept netCDF
datasets as input.

Several organizations have adopted netCDF as a data access standard, and there are efforts under-
way to support the netCDF programming interfaces as a means to store and retrieve data in other
forms. We have encouraged and cooperated with these efforts.

Questions occasionally arise about the level of support provided for the netCDF software. Uni-
data’s formal position, stated in the copyright notice which accompanies the netCDF library, is
that the software is provided “as is”. In practice, the software is updated from time to time, and
Unidata intends to continue adapting the software to new platforms and development environ-
ments and maintaining the ability to access netCDF data for the foreseeable future. Because Uni-
data’s mission is to serve geoscientists at U.S. universities, problems reported by that community
necessarily receive the greatest attention.

We hope the reader will find the software useful and will give us feedback on its application as
well as suggestions for its improvement.

David Fulker, Unidata Program Center Director

University Corporation for Atmospheric Research

Summary vii
Summary
The purpose of the Network Common Data Form (netCDF) interface is to allow you to create,
access, and share array-oriented data in a form that is self-describing and portable. “Self-describ-
ing” means that a dataset includes information defining the data it contains. “Portable” means that
the data in a dataset is represented in a form that can be accessed by computers with different
ways of storing integers, characters, and floating-point numbers. Using the netCDF interface for
creating new datasets makes the data portable. Using the netCDF interface in software for data
access, management, analysis, and display can make the software more generally useful.

The netCDF software includes C, Fortran 77, and Fortran 90 interfaces for accessing netCDF
data. These libraries are available for many common computing platforms.

Java, C++ and Perl interfaces for netCDF data access are also available from Unidata. The com-
munity of netCDF users has contributed ports of the software to additional platforms and inter-
faces for other programming languages as well. Source code for netCDF software libraries is
freely available to encourage the sharing of both array-oriented data and the software that makes
the data useful.

This User’s Guide presents the netCDF data model, but documents only the Fortran 90 interface.
Separate documents are available for the other language interfaces; also see http://www.uni-

data.ucar.edu/packages/netcdf/ for links to on-line versions of the C, FORTRAN, Fortran-
90, Java, C++ and Perl documentation. Reference documentation in the form of UNIX ‘man’
pages for the C and FORTRAN interfaces and extensive additional information about netCDF,
including pointers to other software that works with netCDF data, are also available from the
netCDF home page.

viii

Chapter 1: Introduction 1
1 Introduction

1.1 The NetCDF Interface

The Network Common Data Form, or netCDF, is an interface to a library of data access functions
for storing and retrieving data in the form of arrays. An array is an n-dimensional (where n is 0, 1,
2, …) rectangular structure containing values of the same type (e.g., 8-bit character, 32-bit inte-
ger). A scalar (simple single value) is a 0-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-describing, portable
objects that can be accessed through a simple interface. Array values may be accessed directly,
without knowing details of how the data are stored. Auxiliary information about the data, such as
what units are used, may be stored with the data. Generic utilities and application programs can
access netCDF datasets and transform, combine, analyze, or display specified fields of the data.
The development of such applications may lead to improved accessibility of data and improved
reusability of software for array-oriented data management, analysis, and display.

The netCDF software implements an abstraction, which means that all operations to access and
manipulate data in a netCDF dataset must use only the set of functions provided by the interface.
The representation of the data is hidden from applications that use the interface, so that how the
data are stored could be changed without affecting existing programs. The physical representation
of netCDF data is designed to be independent of the computer on which the data were written.

Unidata supports the netCDF interfaces for C, FORTRAN, Fortran 90, Java, C++, and Perl and
for various UNIX operating systems. The software is also ported and tested on a few other operat-
ing systems, with assistance from users with access to these systems, before each major release.
Unidata’s netCDF software is freely available to encourage its widespread use.

1.2 NetCDF Is Not a Database Management System

Why not use an existing database management system for storing array-oriented data? Relational
database software has not proven to be ideally suited for the kinds of data access supported by the
netCDF interface.

First, existing database systems that support the relational model do not support multidimensional
objects (arrays) as a basic unit of data access. Representing arrays as relations makes some useful
kinds of data access awkward and provides little support for the abstractions of multidimensional
data and coordinate systems. A quite different data model is needed for array-oriented data to
facilitate its retrieval, modification, mathematical manipulation and visualization.

Related to this is a second problem with general-purpose database systems: their poor perfor-
mance on large arrays. Collections of satellite images, scientific model outputs and long-term glo-
bal weather observations are beyond the capabilities of most database systems to organize and
index for efficient retrieval.

2

Finally, general-purpose database systems provide, at significant cost in terms of both resources
and access performance, many facilities that are not needed in the analysis, management, and dis-
play of array-oriented data. For example, elaborate update facilities, audit trails, report formatting,
and mechanisms designed for transaction-processing are unnecessary for most scientific applica-
tions.

1.3 File Format

To achieve network-transparency (machine-independence), netCDF is implemented in terms of an
extended version of XDR (eXternal Data Representation, see http://www.faqs.org/rfcs/

rfc1832.html), a standard for describing and encoding data. This representation provides encod-
ing of data into machine-independent sequences of bits. It has been implemented on a wide vari-
ety of computers, by assuming only that eight-bit bytes can be encoded and decoded in a
consistent way. The IEEE 754 floating-point standard is used for floating-point data representa-
tion.

The overall structure of netCDF files is described in Chapter 9 “NetCDF File Structure and Per-
formance,” page 83.

The details of the format are described in Appendix B “File Format Specification,” page 107.
However, users are discouraged from using the format specification to develop independent low-
level software for reading and writing netCDF files, because this could lead to compatibility prob-
lems if the format is ever modified.

1.4 What about Performance?

One of the goals of netCDF is to support efficient access to small subsets of large datasets. To sup-
port this goal, netCDF uses direct access rather than sequential access. This can be much more
efficient when the order in which data is read is different from the order in which it was written, or
when it must be read in different orders for different applications.

The amount of overhead for a portable external representation depends on many factors, including
the data type, the type of computer, the granularity of data access, and how well the implementa-
tion has been tuned to the computer on which it is run. This overhead is typically small in compar-
ison to the overall resources used by an application. In any case, the overhead of the external
representation layer is usually a reasonable price to pay for portable data access.

Although efficiency of data access has been an important concern in designing and implementing
netCDF, it is still possible to use the netCDF interface to access data in inefficient ways: for exam-
ple, by requesting a slice of data that requires a single value from each record. Advice on how to
use the interface efficiently is provided in Chapter 9 “NetCDF File Structure and Performance,”
page 83.

Chapter 1: Introduction 3
1.5 Is NetCDF a Good Archive Format?

NetCDF can be used as a general-purpose archive format for storing arrays. Compression of data
is possible with netCDF (e.g., using arrays of eight-bit or 16-bit integers to encode low-resolution
floating-point numbers instead of arrays of 32-bit numbers), but the current version of netCDF
was not designed to achieve optimal compression of data. Hence, using netCDF may require more
space than special-purpose archive formats that exploit knowledge of particular characteristics of
specific datasets.

1.6 Creating Self-Describing Data conforming to Conventions

The mere use of netCDF is not sufficient to make data “self-describing” and meaningful to both
humans and machines. The names of variables and dimensions should be meaningful and con-
form to any relevant conventions. Dimensions should have corresponding coordinate variables
where sensible.

Attributes play a vital role in providing ancillary information. It is important to use all the relevant
standard attributes using the relevant conventions. Section 8.1 “Attribute Conventions,” page 69,
describes reserved attributes (used by the netCDF library) and attribute conventions for generic
application software.

A number of groups have defined their own additional conventions and styles for netCDF data.
Descriptions of these conventions, as well as examples incorporating them can be accessed from
the netCDF Conventions site, http://www.unidata.ucar.edu/packages/netcdf/conven-
tions.html.

These conventions should be used where suitable. Additional conventions are often needed for
local use. These should be contributed to the above netCDF conventions site if likely to interest
other users in similar areas.

1.7 Background and Evolution of the NetCDF Interface

The development of the netCDF interface began with a modest goal related to Unidata’s needs: to
provide a common interface between Unidata applications and real-time meteorological data.
Since Unidata software was intended to run on multiple hardware platforms with access from
both C and FORTRAN, achieving Unidata’s goals had the potential for providing a package that
was useful in a broader context. By making the package widely available and collaborating with
other organizations with similar needs, we hoped to improve the then current situation in which
software for scientific data access was only rarely reused by others in the same discipline and
almost never reused between disciplines (Fulker, 1988).

Important concepts employed in the netCDF software originated in a paper (Treinish and Gough,
1987) that described data-access software developed at the NASA Goddard National Space Sci-
ence Data Center (NSSDC). The interface provided by this software was called the Common Data
Format (CDF). The NASA CDF was originally developed as a platform-specific FORTRAN

4

library to support an abstraction for storing arrays.

The NASA CDF package had been used for many different kinds of data in an extensive collec-
tion of applications. It had the virtues of simplicity (only 13 subroutines), independence from
storage format, generality, ability to support logical user views of data, and support for generic
applications.

Unidata held a workshop on CDF in Boulder in August 1987. We proposed exploring the possibil-
ity of collaborating with NASA to extend the CDF FORTRAN interface, to define a C interface,
and to permit the access of data aggregates with a single call, while maintaining compatibility
with the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had devel-
oped a package of C software for UNIX that supported sequential access to self-describing array-
oriented data and a “pipes and filters” (or “data flow”) approach to processing, analyzing, and dis-
playing the data. This package also used the “Common Data Format” name, later changed to C-
Based Analysis and Display System (CANDIS). Unidata learned of Raymond’s work (Raymond,
1988), and incorporated some of his ideas, such as the use of named dimensions and variables
with differing shapes in a single data object, into the Unidata netCDF interface.

In early 1988, Glenn Davis of Unidata developed a prototype netCDF package in C that was lay-
ered on XDR. This prototype proved that a single-file, XDR-based implementation of the CDF
interface could be achieved at acceptable cost and that the resulting programs could be imple-
mented on both UNIX and VMS systems. However, it also demonstrated that providing a small,
portable, and NASA CDF-compatible FORTRAN interface with the desired generality was not
practical. NASA’s CDF and Unidata’s netCDF have since evolved separately, but recent CDF ver-
sions share many characteristics with netCDF.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development firm in San
Diego, California), a participant in the 1987 Unidata CDF workshop, independently developed a
CDF package in C that extended the NASA CDF interface in several important ways (Fahle,
1989). Like Raymond’s package, the SeaSpace CDF software permitted variables with unrelated
shapes to be included in the same data object and permitted a general form of access to multidi-
mensional arrays. Fahle’s implementation was used at SeaSpace as the intermediate form of stor-
age for a variety of steps in their image-processing system. This interface and format have
subsequently evolved into the Terascan data format.

After studying Fahle’s interface, we concluded that it solved many of the problems we had identi-
fied in trying to stretch the NASA interface to our purposes. In August 1988, we convened a small
workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues. Attend-
ing were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDF soft-
ware), Angel Li of the University of Miami (who had implemented our prototype netCDF
software on VMS and was a potential user), and Unidata systems development staff. Consensus
was reached at the workshop after some further simplifications were discovered. A document
incorporating the results of the workshop into a proposed Unidata netCDF interface specification
was distributed widely for comments before Glenn Davis and Russ Rew implemented the first
version of the software. Comparison with other data-access interfaces and experience using

Chapter 1: Introduction 5
netCDF are discussed in Rew and Davis (1990a), Rew and Davis (1990b), Jenter and Signell
(1992), and Brown, Folk, Goucher, and Rew (1993).

In October 1991, we announced version 2.0 of the netCDF software distribution. Slight modifica-
tions to the C interface (declaring dimension lengths to be long rather than int) improved the
usability of netCDF on inexpensive platforms such as MS-DOS computers, without requiring
recompilation on other platforms. This change to the interface required no changes to the associ-
ated file format.

Release of netCDF version 2.3 in June 1993 preserved the same file format but added single call
access to records, optimizations for accessing cross-sections involving non-contiguous data, sub-
sampling along specified dimensions (using ‘strides’), accessing non-contiguous data (using
‘mapped array sections’), improvements to the ncdump and ncgen utilities, and an experimental
C++ interface.

In version 2.4, released in February 1996, support was added for new platforms and for the C++
interface, and significant optimizations were implemented for supercomputer architectures.

FAN (File Array Notation), software providing a high-level interface to netCDF data, was made
available in May 1996. The capabilities of the FAN utilities include extracting and manipulating
array data from netCDF datasets, printing selected data from netCDF arrays, copying ASCII data
into netCDF arrays, and performing various operations (sum, mean, maximum, minimum, prod-
uct,…) on netCDF arrays. More information about FAN is available from the FAN Utilities docu-
ment, http://www.unidata.ucar.edu/packages/netcdf/fan_utils.html.

1.8 What’s New Since the Previous Release?

This Guide documents netCDF 3, which preserves the same file format as earlier versions but
includes some major changes from version 2:

• complete rewrite of the netCDF library in ANSI C;
• new type-safe C and FORTRAN interfaces;
• automatic type conversion facilities;
• significant changes in the internal architecture, resulting in higher performance and easier

optimization on new platforms;
• support for all netCDF 2 function interfaces, globals variables, and behavior, for backward

compatibility;
• revised documentation; and fixes for reported bugs.

1.9 Limitations of NetCDF

The netCDF data model is widely applicable to data that can be organized into a collection of
named array variables with named attributes, but there are some important limitations to the
model and its implementation in software. Some of these limitations are inherent in the trade-offs
among conflicting requirements that netCDF embodies, but other limitations may be addressed in

6

a future version of the software.

Currently, netCDF offers a limited number of external numeric data types: 8-, 16-, 32-bit integers,
or 32- or 64-bit floating-point numbers. This limited set of sizes may use file space inefficiently
compared to packing data in bit fields. For example, arrays of 9-bit values must be stored in 16-bit
short integers. Storing arrays of 1- or 2-bit values in 8-bit values is even less optimal.

With the current netCDF file format, there are constraints that limit how a dataset is structured to
store more than 2 gigabytes of data in a single netCDF dataset. This limitation is a result of 32-bit
offsets currently used for storing relative offsets within a file. Since one of the goals of netCDF is
portable data and there are still many computing platforms that can’t deal with files larger than 2
Gbytes, it is best to keep files that must be portable below this limit. Neveretheless, it is possible
to store terabytes of data in a single netCDF file, as discussed in 9.3 “Large File Support,”
page 84.

Another limitation of the current model is that only one unlimited (changeable) dimension is per-
mitted for each netCDF data set. Multiple variables can share an unlimited dimension, but then
they must all grow together. Hence the netCDF model does not permit variables with several
unlimited dimensions or the use of multiple unlimited dimensions in different variables within the
same dataset. Hence variables that have non-rectangular shapes (for example, ragged arrays) can-
not be represented conveniently.

The extent to which data can be completely self-describing is limited: there is always some
assumed context without which sharing and archiving data would be impractical. NetCDF permits
storing meaningful names for variables, dimensions, and attributes; units of measure in a form
that can be used in computations; text strings for attribute values that apply to an entire data set;
and simple kinds of coordinate system information. But for more complex kinds of metadata (for
example, the information necessary to provide accurate georeferencing of data on unusual grids or
from satellite images), it is often necessary to develop conventions.

Specific additions to the netCDF data model might make some of these conventions unnecessary
or allow some forms of metadata to be represented in a uniform and compact way. For example,
adding explicit georeferencing to the netCDF data model would simplify elaborate georeferencing
conventions at the cost of complicating the model. The problem is finding an appropriate trade-off
between the richness of the model and its generality (i.e., its ability to encompass many kinds of
data). A data model tailored to capture the shared context among researchers within one discipline
may not be appropriate for sharing or combining data from multiple disciplines.

The netCDF data model does not support nested data structures such as trees, nested arrays, or
other recursive structures, primarily because the current FORTRAN interface must be able to read
and write any netCDF data set. Through use of indirection and conventions it is possible to repre-
sent some kinds of nested structures, but the result may fall short of the netCDF goal of self-
describing data.

Finally, the current implementation limits concurrent access to a netCDF dataset. One writer and
multiple readers may access data in a single dataset simultaneously, but there is no support for
multiple concurrent writers.

Chapter 1: Introduction 7
1.10 Future Plans for NetCDF

Current plans are to add transparent data packing, improved concurrency support, and the ability
to access datasets larger than 2 Gigabytes. Other desirable extensions that may be added, if practi-
cal, include access to data by key or coordinate value, support for efficient structure changes (e.g.,
new variables and attributes), support for pointers to data cross-sections in other datasets, nested
arrays (allowing representation of ragged arrays, trees and other recursive data structures), and
multiple unlimited dimensions.

References

1. Brown, S. A, M. Folk, G. Goucher, and R. Rew, “Software for Portable Scientific Data Man-
agement,” Computers in Physics, American Institute of Physics, Vol. 7, No. 3, May/June
1993.

2. Davies, H. L., “FAN - An array-oriented query language,” Second Workshop on Database
Issues for Data Visualization (Visualization 1995), Atlanta, Georgia, IEEE, October 1995.

3. Fahle, J., TeraScan Applications Programming Interface, SeaSpace, San Diego, California,
1989.

4. Fulker, D. W., “The netCDF: Self-Describing, Portable Files---a Basis for ‘Plug-Compatible’
Software Modules Connectable by Networks,” ICSU Workshop on Geophysical Informatics,
Moscow, USSR, August 1988.

5. Fulker, D. W., “Unidata Strawman for Storing Earth-Referencing Data,” Seventh International
Conference on Interactive Information and Processing Systems for Meteorology, Oceanogra-
phy, and Hydrology, New Orleans, La., American Meteorology Society, January 1991.

6. Gough, M. L., NSSDC CDF Implementer’s Guide (DEC VAX/VMS) Version 1.1, National
Space Science Data Center, 88-17, NASA/Goddard Space Flight Center, 1988.

7. Jenter, H. L. and R. P. Signell, “NetCDF: A Freely-Available Software-Solution to Data-
Access Problems for Numerical Modelers,” Proceedings of the American Society of Civil
Engineers Conference on Estuarine and Coastal Modeling, Tampa, Florida, 1992.

8. Raymond, D. J., “A C Language-Based Modular System for Analyzing and Displaying Grid-
ded Numerical Data,” Journal of Atmospheric and Oceanic Technology, 5, 501-511, 1988.

9. Rew, R. K. and G. P. Davis, “The Unidata netCDF: Software for Scientific Data Access,” Sixth
International Conference on Interactive Information and Processing Systems for Meteorology,
Oceanography, and Hydrology, Anaheim, California, American Meteorology Society, Febru-
ary 1990.

10. Rew, R. K. and G. P. Davis, “NetCDF: An Interface for Scientific Data Access,” Computer
Graphics and Applications, IEEE, pp. 76-82, July 1990.

11. Rew, R. K. and G. P. Davis, “Unidata’s netCDF Interface for Data Access: Status and Plans,”
Thirteenth International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Anaheim, California, American Meteorology
Society, February 1997.

12. Treinish, L. A. and M. L. Gough, “A Software Package for the Data Independent Management
of Multi-Dimensional Data,” EOS Transactions, American Geophysical Union, 68, 633-635,
1987.

8

Chapter 2: Components of a NetCDF Dataset 9
2 Components of a NetCDF Dataset

2.1 The NetCDF Data Model

A netCDF dataset contains dimensions, variables, and attributes, which all have both a name and
an ID number by which they are identified. These components can be used together to capture the
meaning of data and relations among data fields in an array-oriented dataset. The netCDF library
allows simultaneous access to multiple netCDF datasets which are identified by dataset ID num-
bers, in addition to ordinary file names.

A netCDF dataset contains a symbol table for variables containing their name, data type, rank
(number of dimensions), dimensions, and starting disk address. Each element is stored at a disk
address which is a linear function of the array indices (subscripts) by which it is identified. Hence,
these indices need not be stored separately (as in a relational database). This provides a fast and
compact storage method.

2.1.1 Naming Conventions

The names of dimensions, variables and attributes consist of arbitrary sequences of alphanumeric
characters (as well as underscore ‘_’ and hyphen ‘-’), beginning with a letter or underscore.
(However names commencing with underscore are reserved for system use.) Case is significant in
netCDF names.

2.1.2 Network Common Data Form Language (CDL)

We will use a small netCDF example to illustrate the concepts of the netCDF data model. This
includes dimensions, variables, and attributes. The notation used to describe this simple netCDF
object is called CDL (network Common Data form Language), which provides a convenient way
of describing netCDF datasets. The netCDF system includes utilities for producing human-ori-
ented CDL text files from binary netCDF datasets and vice versa.

netcdf example_1 { // example of CDL notation for a netCDF dataset

dimensions: // dimension names and lengths are declared first
 lat = 5, lon = 10, level = 4, time = unlimited;

variables: // variable types, names, shapes, attributes
 float temp(time,level,lat,lon);
 temp:long_name = "temperature";
 temp:units = "celsius";
 float rh(time,lat,lon);
 rh:long_name = "relative humidity";
 rh:valid_range = 0.0, 1.0; // min and max
 int lat(lat), lon(lon), level(level);
 lat:units = "degrees_north";
 lon:units = "degrees_east";

10
 level:units = "millibars";
 short time(time);
 time:units = "hours since 1996-1-1";
 // global attributes
 :source = "Fictional Model Output";

data: // optional data assignments
 level = 1000, 850, 700, 500;
 lat = 20, 30, 40, 50, 60;
 lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
 time = 12;
 rh =.5,.2,.4,.2,.3,.2,.4,.5,.6,.7,
 .1,.3,.1,.1,.1,.1,.5,.7,.8,.8,
 .1,.2,.2,.2,.2,.5,.7,.8,.9,.9,
 .1,.2,.3,.3,.3,.3,.7,.8,.9,.9,
 0,.1,.2,.4,.4,.4,.4,.7,.9,.9;
}

The CDL notation for a netCDF dataset can be generated automatically by using ncdump, a utility
program described later (see Section 10.5 “ncdump,” page 94). Another netCDF utility, ncgen,
generates a netCDF dataset (or optionally C or FORTRAN source code containing calls needed to
produce a netCDF dataset) from CDL input (see Section 10.4 “ncgen,” page 93).

The CDL notation is simple and largely self-explanatory. It will be explained more fully as we
describe the components of a netCDF dataset. For now, note that CDL statements are terminated
by a semicolon. Spaces, tabs, and newlines can be used freely for readability. Comments in CDL
follow the characters ‘//’ on any line. A CDL description of a netCDF dataset takes the form

 netCDF name {
 dimensions: …
 variables: …
 data: …
 }

where the name is used only as a default in constructing file names by the ncgen utility. The CDL
description consists of three optional parts, introduced by the keywords dimensions, variables,
and data. NetCDF dimension declarations appear after the dimensions keyword, netCDF vari-
ables and attributes are defined after the variables keyword, and variable data assignments
appear after the data keyword.

2.2 Dimensions

A dimension may be used to represent a real physical dimension, for example, time, latitude, lon-
gitude, or height. A dimension might also be used to index other quantities, for example station or
model-run-number.

A netCDF dimension has both a name and a length. A dimension length is an arbitrary positive
integer, except that one dimension in a netCDF dataset can have the length UNLIMITED.

Chapter 2: Components of a NetCDF Dataset 11
Such a dimension is called the unlimited dimension or the record dimension. A variable with an
unlimited dimension can grow to any length along that dimension. The unlimited dimension index
is like a record number in conventional record-oriented files. A netCDF dataset can have at most
one unlimited dimension, but need not have any. If a variable has an unlimited dimension, that
dimension must be the most significant (slowest changing) one. Thus any unlimited dimension
must be the first dimension in a CDL shape and the last dimension in corresponding Fortran-90
array declarations.

CDL dimension declarations may appear on one or more lines following the CDL keyword
dimensions. Multiple dimension declarations on the same line may be separated by commas.
Each declaration is of the form name = length.

There are four dimensions in the above example: lat, lon, level, and time. The first three are
assigned fixed lengths; time is assigned the length UNLIMITED, which means it is the unlimited
dimension.

The basic unit of named data in a netCDF dataset is a variable. When a variable is defined, its
shape is specified as a list of dimensions. These dimensions must already exist. The number of
dimensions is called the rank (a.k.a. dimensionality). A scalar variable has rank 0, a vector has
rank 1 and a matrix has rank 2.

It is possible to use the same dimension more than once in specifying a variable shape (but this
was not possible in previous netCDF versions). For example, correlation(instrument,
instrument) could be a matrix giving correlations between measurements using different instru-
ments. But data whose dimensions correspond to those of physical space/time should have a
shape comprising different dimensions, even if some of these have the same length.

2.3 Variables

Variables are used to store the bulk of the data in a netCDF dataset. A variable represents an array
of values of the same type. A scalar value is treated as a 0-dimensional array. A variable has a
name, a data type, and a shape described by its list of dimensions specified when the variable is
created. A variable may also have associated attributes, which may be added, deleted or changed
after the variable is created.

A variable external data type is one of a small set of netCDF types that have the names
NF90_BYTE (with synonym NF90_INT1), NF90_CHAR,NF90_SHORT (with synonym NF90_INT2),
NF90_INT (with synonym NF90_INT4), NF90_FLOAT (with synonyms NF90_REAL and
NF90_REAL4), and NF90_DOUBLE (with synonym NF90_REAL8) in the Fortran-90 interface.

In the CDL notation, these types are given the simpler names byte, char, short, int, float, and
double. real may be used as a synonym for float in the CDL notation. long is a deprecated
synonym for int. The exact meaning of each of the types is discussed in Section 3.1 “NetCDF
external data types,” page 15.

CDL variable declarations appear after the variable keyword in a CDL unit. They have the form

12
type variable_name (dim_name_1, dim_name_2, …);

for variables with dimensions, or

type variable_name;

for scalar variables.

In the above CDL example there are six variables. As discussed below, four of these are coordi-
nate variables. The remaining variables (sometimes called primary variables), temp and rh, con-
tain what is usually thought of as the data. Each of these variables has the unlimited dimension
time as its first dimension, so they are called record variables. A variable that is not a record
variable has a fixed length (number of data values) given by the product of its dimension lengths.
The length of a record variable is also the product of its dimension lengths, but in this case the
product is variable because it involves the length of the unlimited dimension, which can vary. The
length of the unlimited dimension is the number of records.

2.3.1 Coordinate Variables

It is legal for a variable to have the same name as a dimension. Such variables have no special
meaning to the netCDF library. However there is a convention that such variables should be
treated in a special way by software using this library.

A variable with the same name as a dimension is called a coordinate variable. It typically defines
a physical coordinate corresponding to that dimension. The above CDL example includes the
coordinate variables lat, lon, level and time, defined as follows:

 int lat(lat), lon(lon), level(level);
 short time(time);
…
data:
 level = 1000, 850, 700, 500;
 lat = 20, 30, 40, 50, 60;
 lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
 time = 12;

These define the latitudes, longitudes, barometric pressures and times corresponding to positions
along these dimensions. Thus there is data at altitudes corresponding to 1000, 850, 700 and 500
millibars; and at latitudes 20, 30, 40, 50 and 60 degrees north. Note that each coordinate variable
is a vector and has a shape consisting of just the dimension with the same name.

A position along a dimension can be specified using an index. This is an integer with a minimum
value of 1 for Fortran-90 programs. Thus the 700 millibar level would have an index value of 3 in
the example above.

If a dimension has a corresponding coordinate variable, then this provides an alternative, and
often more convenient, means of specifying position along it. Current application packages that
make use of coordinate variables commonly assume they are numeric vectors and strictly mono-

Chapter 2: Components of a NetCDF Dataset 13
tonic (all values are different and either increasing or decreasing).

2.4 Attributes

NetCDF attributes are used to store data about the data (ancillary data or metadata), similar in
many ways to the information stored in data dictionaries and schema in conventional database
systems. Most attributes provide information about a specific variable. These are identified by the
name (or ID) of that variable, together with the name of the attribute.

Some attributes provide information about the dataset as a whole and are called global attributes.
These are identified by the attribute name together with a blank variable name (in CDL) or a spe-
cial null “global variable” ID (in C or Fortran).

An attribute has an associated variable (the null “global variable” for a global attribute), a name, a
data type, a length, and a value. The current version treats all attributes as vectors; scalar values
are treated as single-element vectors.

Conventional attribute names should be used where applicable. New names should be as mean-
ingful as possible.

The external type of an attribute is specified when it is created. The types permitted for attributes
are the same as the netCDF external data types for variables. Attributes with the same name for
different variables should sometimes be of different types. For example, the attribute valid_max

specifying the maximum valid data value for a variable of type int should be of type int,
whereas the attribute valid_max for a variable of type double should instead be of type double.

Attributes are more dynamic than variables or dimensions; they can be deleted and have their
type, length, and values changed after they are created, whereas the netCDF interface provides no
way to delete a variable or to change its type or shape.

The CDL notation for defining an attribute is

variable_name:attribute_name = list_of_values;

for a variable attribute, or

 :attribute_name = list_of_values;

for a global attribute. The type and length of each attribute are not explicitly declared in CDL;
they are derived from the values assigned to the attribute. All values of an attribute must be of the
same type. The notation used for constant values of the various netCDF types is discussed later
(see Section 10.3 “CDL Notation for Data Constants,” page 92).

In the netCDF example (see Section 2.1.2 “Network Common Data Form Language (CDL),”
page 9), units is an attribute for the variable lat that has a 13-character array value
‘degrees_north’. And valid_range is an attribute for the variable rh that has length 2 and val-
ues ‘0.0’ and ‘1.0’.

14
One global attribute---source---is defined for the example netCDF dataset. This is a character
array intended for documenting the data. Actual netCDF datasets might have more global
attributes to document the origin, history, conventions, and other characteristics of the dataset as a
whole.

Most generic applications that process netCDF datasets assume standard attribute conventions
and it is strongly recommended that these be followed unless there are good reasons for not doing
so. See Section 8.1 “Attribute Conventions,” page 69, for information about units, long_name,
valid_min, valid_max, valid_range, scale_factor, add_offset, _FillValue, and other
conventional attributes.

Attributes may be added to a netCDF dataset long after it is first defined, so you don’t have to
anticipate all potentially useful attributes. However adding new attributes to an existing dataset
can incur the same expense as copying the dataset. See Chapter 9 “NetCDF File Structure and
Performance,” page 83, for a more extensive discussion.

2.5 Differences between Attributes and Variables

In contrast to variables, which are intended for bulk data, attributes are intended for ancillary data,
or information about the data. The total amount of ancillary data associated with a netCDF object,
and stored in its attributes, is typically small enough to be memory-resident. However variables
are often too large to entirely fit in memory and must be split into sections for processing.

Another difference between attributes and variables is that variables may be multidimensional.
Attributes are all either scalars (single-valued) or vectors (a single, fixed dimension).

Variables are created with a name, type, and shape before they are assigned data values, so a vari-
able may exist with no values. The value of an attribute must be specified when it is created, so no
attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned to vari-
ables may have the same units as the variable (for example, valid_range) or have no units (for
example, scale_factor). If you want to store data that requires units different from those of the
associated variable, it is better to use a variable than an attribute. More generally, if data require
ancillary data to describe them, are multidimensional, require any of the defined netCDF dimen-
sions to index their values, or require a significant amount of storage, that data should be repre-
sented using variables rather than attributes.

Chapter 3: Data 15
3 Data
This chapter discusses the six primitive netCDF external data types, the kinds of data access sup-
ported by the netCDF interface, and how data structures other than arrays may be implemented in
a netCDF dataset.

3.1 NetCDF external data types

The external types supported by the netCDF interface are:

These types were chosen to provide a reasonably wide range of trade-offs between data precision
and number of bits required for each value. These external data types are independent from what-
ever internal data types are supported by a particular machine and language combination.

These types are called “external”, because they correspond to the portable external representation
for netCDF data. When a program reads external netCDF data into an internal variable, the data is
converted, if necessary, into the specified internal type. Similarly, if you write internal data into a
netCDF variable, this may cause it to be converted to a different external type, if the external type
for the netCDF variable differs from the internal type.

The separation of external and internal types and automatic type conversion have several advan-
tages. You need not be aware of the external type of numeric variables, since automatic conver-
sion to or from any desired numeric type is available. You can use this feature to simplify code, by
making it independent of external types, using a sufficiently wide internal type, e.g., double preci-
sion, for numeric netCDF data of several different external types. Programs need not be changed
to accommodate a change to the external type of a variable.

If conversion to or from an external numeric type is necessary, it is handled by the library. This
automatic conversion and separation of external data representation from internal data types will
become even more important in a future version of netCDF, when new external types will be
added for packed data for which there may be no natural corresponding internal type, for exam-
ple, packed arrays of 11-bit values.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an internal short integer type may not be

char 8-bit characters intended for representing text.

byte 8-bit signed or unsigned integers (see discussion below).

short 16-bit signed integers.

int 32-bit signed integers.

float or real 32-bit IEEE floating-point.

double 64-bit IEEE floating-point.

16
able to hold data stored externally as an integer. When accessing an array of values, a range error
is returned if one or more values are out of the range of representable values, but other values are
converted properly.

Note that mere loss of precision in type conversion does not return an error. Thus, if you read dou-
ble precision values into a single-precision floating-point variable, for example, no error results
unless the magnitude of the double precision value exceeds the representable range of single-pre-
cision floating point numbers on your platform. Similarly, if you read a large integer into a float
incapable of representing all the bits of the integer in its mantissa, this loss of precision will not
result in an error. If you want to avoid such precision loss, check the external types of the vari-
ables you access to make sure you use an internal type that has adequate precision.

The names for the primitive external data types (byte, char, short, int, float or real, and
double) are reserved words in CDL, so the names of variables, dimensions, and attributes must
not be type names.

It is possible to interpret byte data as either signed (-128 to 127) or unsigned (0 to 255). However,
when reading byte data to be converted into other numeric types, it is interpreted as signed.

See Section 2.3 “Variables,” page 11, for the correspondence between netCDF external data types
and the data types of a language.

3.2 Data Access

To access (read or write) netCDF data you specify an open netCDF dataset, a netCDF variable,
and information (e.g., indices) identifying elements of the variable. The name of the access func-
tion corresponds to the internal type of the data. If the internal type has a different representation
from the external type of the variable, a conversion between the internal type and external type
will take place when the data is read or written.

Access to data is direct, which means you can access a small subset of data from a large dataset
efficiently, without first accessing all the data that precedes it. Reading and writing data by speci-
fying a variable, instead of a position in a file, makes data access independent of how many other
variables are in the dataset, making programs immune to data format changes that involve adding
more variables to the data.

In the C, FORTRAN, and Fortran 90 interfaces, datasets are not specified by name every time you
want to access data, but instead by a small integer called a dataset ID, obtained when the dataset is
first created or opened.

Similarly, a variable is not specified by name for every data access either, but by a variable ID, a
small integer used to identify each variable in a netCDF dataset.

3.2.1 Forms of Data Access

The netCDF interface supports several forms of direct access to data values in an open netCDF

Chapter 3: Data 17
dataset. We describe each of these forms of access in order of increasing generality:

• access to all elements;
• access to individual elements, specified with an index vector;
• access to array sections, specified with an index vector, and count vector;
• access to subsampled array sections, specified with an index vector, count vector, and stride

vector; and
• access to mapped array sections, specified with an index vector, count vector, stride vector,

and an index mapping vector.

The four types of vector (index vector, count vector, stride vector and index mapping vector) each
have one element for each dimension of the variable. Thus, for an n-dimensional variable (rank =
n), n-element vectors are needed. If the variable is a scalar (no dimensions), these vectors are
ignored.

An array section is a “slab” or contiguous rectangular block that is specified by two vectors. The
index vector gives the indices of the element in the corner closest to the origin. The count vector
gives the lengths of the edges of the slab along each of the variable’s dimensions, in order. The
number of values accessed is the product of these edge lengths.

A subsampled array section is similar to an array section, except that an additional stride vector
is used to specify sampling. This vector has an element for each dimension giving the length of
the strides to be taken along that dimension. For example, a stride of 4 means every fourth value
along the corresponding dimension. The total number of values accessed is again the product of
the elements of the count vector.

A mapped array section is similar to a subsampled array section except that an additional index
mapping vector allows one to specify how data values associated with the netCDF variable are
arranged in memory. The offset of each value from the reference location, is given by the sum of
the products of each index (of the imaginary internal array which would be used if there were no
mapping) by the corresponding element of the index mapping vector. The number of values
accessed is the same as for a subsampled array section.

The use of mapped array sections is discussed more fully below, but first we present an example
of the more commonly used array-section access.

3.2.2 An Example of Array-Section Access

Assume that in our earlier example of a netCDF dataset (see Section 2.1.2 “Network Common
Data Form Language (CDL),” page 9), we wish to read a cross-section of all the data for the temp
variable at one level (say, the second), and assume that there are currently three records (time val-
ues) in the netCDF dataset. Recall that the dimensions are defined as

 lat = 5, lon = 10, level = 4, time = unlimited;

and the variable temp is declared as

18
 float temp(time, level, lat, lon);

in the CDL notation.

In Fortran-90, the dimensions are reversed from the CDL declaration with the first dimension
varying fastest and the record dimension as the last dimension of a record variable. Thus the For-
tran-90 declaration for a variable that holds data for only one level is

INTEGER, PARAMETER :: LATS = 5, LONS = 10, LEVELS = 1, TIMES = 3
…
REAL, DIMENSION(LONS, LATS, LEVELS, TIMES) :: TEMP

To specify the block of data that represents just the second level, all times, all latitudes, and all
longitudes, we need to provide a start index and some edge lengths. The start index should be (1,
1, 2, 1) in Fortran-90, because we want to start at the beginning of each of the time, lon, and lat

dimensions, but we want to begin at the second value of the level dimension. The edge lengths
should be (10, 5, 1, 3) in Fortran-90, since we want to get data for all three time values, only one
level value, all five lat values, and all 10 lon values. We should expect to get a total of 150
floating-point values returned (3 * 1 * 5 * 10), and should provide enough space in our array for
this many. The order in which the data will be returned is with the first dimension, LON, varying
fastest:

 TEMP(1, 1, 2, 1)
 TEMP(2, 1, 2, 1)
 TEMP(3, 1, 2, 1)
 TEMP(4, 1, 2, 1)

 …

 TEMP(8, 5, 2, 3)
 TEMP(9, 5, 2, 3)
 TEMP(10, 5, 2, 3)

Different dimension orders for the C, FORTRAN, or other language interfaces do not reflect a dif-
ferent order for values stored on the disk, but merely different orders supported by the procedural
interfaces to the languages. In general, it does not matter whether a netCDF dataset is written
using the C, FORTRAN, or another language interface; netCDF datasets written from any sup-
ported language may be read by programs written in other supported languages.

3.2.3 More on General Array Section Access

The use of mapped array sections allows non-trivial relationships between the disk addresses of
variable elements and the addresses where they are stored in memory. For example, a matrix in
memory could be the transpose of that on disk, giving a quite different order of elements. In a reg-
ular array section, the mapping between the disk and memory addresses is trivial: the structure of
the in-memory values (i.e., the dimensional lengths and their order) is identical to that of the array
section. In a mapped array section, however, an index mapping vector is used to define the map-

Chapter 3: Data 19
ping between indices of netCDF variable elements and their memory addresses.

With mapped array access, the offset (number of array elements) from the origin of a memory-res-

ident array to a particular point is given by the inner product1 of the index mapping vector with
the point’s coordinate offset vector. A point’s coordinate offset vector gives, for each dimension,
the offset from the origin of the containing array to the point. In Fortran-90, the values of a point’s
coordinate offset vector are one less than the corresponding values of the point’s coordinate vec-
tor, e.g., the array element A(3,5) has coordinate offset vector [2, 4].

The index mapping vector for a regular array section would have—in order from most rapidly
varying dimension to most slowly—a constant 1, the product of that value with the edge length of
the most rapidly varying dimension of the array section, then the product of that value with the
edge length of the next most rapidly varying dimension, and so on. In a mapped array, however,
the correspondence between netCDF variable disk locations and memory locations can be differ-
ent.

A detailed example of mapped array access is presented in the description of the interfaces for
mapped array access. See Section 7.6 “Reading Data Values: NF90_GET_VAR,” page 61.

Note that, although the netCDF abstraction allows the use of subsampled or mapped array-section
access, their use is not required. If you do not need these more general forms of access, you may
ignore these capabilities and use single value access or regular array section access instead.

3.3 Type Conversion

Each netCDF variable has an external type, specified when the variable is first defined. This exter-
nal type determines whether the data is intended for text or numeric values, and if numeric, the
range and precision of numeric values.

If the netCDF external type for a variable is char, only character data representing text strings can
be written to or read from the variable. No automatic conversion of text data to a different repre-
sentation is supported.

If the type is numeric, however, the netCDF library allows you to access the variable data as a dif-
ferent type and provides automatic conversion between the numeric data in memory and the data
in the netCDF variable. For example, if you write a program that deals with all numeric data as
double-precision floating point values, you can read netCDF data into double-precision arrays
without knowing or caring what the external type of the netCDF variables are. On reading netCDF
data, integers of various sizes and single-precision floating-point values will all be converted to
double-precision, if you use the data access interface for double-precision values. Of course, you
can avoid automatic numeric conversion by using the netCDF interface for a value type that corre-
sponds to the external data type of each netCDF variable, where such value types exist.

1. The inner product of two vectors [x0, x1, …, xn] and [y0, y1, …, yn] is just x0*y0 +
x1*y1 + … + xn*yn.

20
The automatic numeric conversions performed by netCDF are easy to understand, because they
behave just like assignment of data of one type to a variable of a different type. For example, if
you read floating-point netCDF data as integers, the result is truncated towards zero, just as it
would be if you assigned a floating-point value to an integer variable. Such truncation is an exam-
ple of the loss of precision that can occur in numeric conversions.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an integer may not be able to hold data
stored externally as an IEEE floating-point number. When accessing an array of values, a range
error is returned if one or more values are out of the range of representable values, but other val-
ues are converted properly.

Note that mere loss of precision in type conversion does not result in an error. For example, if you
read double precision values into an integer, no error results unless the magnitude of the double
precision value exceeds the representable range of integers on your platform. Similarly, if you
read a large integer into a float incapable of representing all the bits of the integer in its mantissa,
this loss of precision will not result in an error. If you want to avoid such precision loss, check the
external types of the variables you access to make sure you use an internal type that has a compat-
ible precision.

Whether a range error occurs in writing a large floating-point value near the boundary of repre-
sentable values may be depend on the platform. The largest floating-point value you can write to a
netCDF float variable is the largest floating-point number representable on your system that is less
than 2 to the 128th power. The largest double precision value you can write to a double variable is
the largest double-precision number representable on your system that is less than 2 to the 1024th
power.

This automatic conversion and separation of external data representation from internal data types
will become even more important in a future version of netCDF, when new external types will be
added for packed data for which there is no natural corresponding internal type, for example,
arrays of 11-bit values.

3.4 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection of
named arrays with attached vector attributes. NetCDF is not particularly well-suited for storing
linked lists, trees, sparse matrices, ragged arrays or other kinds of data structures requiring point-
ers.

It is possible to build other kinds of data structures from sets of arrays by adopting various con-
ventions regarding the use of data in one array as pointers into another array. The netCDF library
won’t provide much help or hindrance with constructing such data structures, but netCDF pro-
vides the mechanisms with which such conventions can be designed.

The following example stores a ragged array ragged_mat using an attribute row_index to name
an associated index variable giving the index of the start of each row. In this example, the first row

Chapter 3: Data 21
contains 12 elements, the second row contains 7 elements (19 - 12), and so on.

 float ragged_mat(max_elements);
 ragged_mat:row_index = "row_start";
 int row_start(max_rows);
data:
 row_start = 0, 12, 19, …

As another example, netCDF variables may be grouped within a netCDF dataset by defining
attributes that list the names of the variables in each group, separated by a conventional delimiter
such as a space or comma. Using a naming convention for attribute names for such groupings per-
mits any number of named groups of variables. A particular conventional attribute for each vari-
able might list the names of the groups of which it is a member. Use of attributes, or variables that
refer to other attributes or variables, provides a flexible mechanism for representing some kinds of
complex structures in netCDF datasets.

22

Chapter 4: Use of the NetCDF Library 23
4 Use of the NetCDF Library
You can use the netCDF library without knowing about all of the netCDF interface. If you are cre-
ating a netCDF dataset, only a handful of routines are required to define the necessary dimen-
sions, variables, and attributes, and to write the data to the netCDF dataset. (Even less are needed
if you use the ncgen utility, see 10.4 “ncgen,” page 93, to create the dataset before running a pro-
gram using netCDF library calls to write data.) Similarly, if you are writing software to access
data stored in a particular netCDF object, only a small subset of the netCDF library is required to
open the netCDF dataset and access the data. Authors of generic applications that access arbitrary
netCDF datasets need to be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for common
uses. For clarity we present only the names of routines; omit declarations and error checking; omit
the type-specific suffixes of routine names for variables and attributes; indent statements that are
typically invoked multiple times; and use … to represent arbitrary sequences of other statements.
Full parameter lists are described in later chapters.

4.1 Creating a NetCDF Dataset

Here is a typical sequence of netCDF calls used to create a new netCDF dataset:

 NF90_CREATE ! create netCDF dataset: enter define mode
 …
 NF90_DEF_DIM ! define dimensions: from name and length
 …
 NF90_DEF_VAR ! define variables: from name, type, dims
 …
 NF90_PUT_ATT ! assign attribute values
 …
 NF90_ENDDEF ! end definitions: leave define mode
 …
 NF90_PUT_VAR ! provide values for variable
 …
 NF90_CLOSE ! close: save new netCDF dataset

Only one call is needed to create a netCDF dataset, at which point you will be in the first of two
netCDF modes. When accessing an open netCDF dataset, it is either in define mode or data mode.
In define mode, you can create dimensions, variables, and new attributes, but you cannot read or
write variable data. In data mode, you can access data and change existing attributes, but you are
not permitted to create new dimensions, variables, or attributes.

One call to NF90_DEF_DIM is needed for each dimension created. Similarly, one call to
NF90_DEF_VAR is needed for each variable creation, and one call to a member of the
NF90_PUT_ATT family is needed for each attribute defined and assigned a value. To leave define
mode and enter data mode, call NF90_ENDDEF.

24
Once in data mode, you can add new data to variables, change old values, and change values of
existing attributes (so long as the attribute changes do not require more storage space). Data of all
types is written to a netCDF variable using the NF90_PUT_VAR subroutine. Single values, arrays,
or array sections may be supplied to NF90_PUT_VAR; optional arguments allow the writing of sub-
sampled or mapped portions of the variable. (Subsampled and mapped access are general forms of
data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing by call-
ing NF90_CLOSE. By default, access to the file system is buffered by the netCDF library. If a pro-
gram terminates abnormally with netCDF datasets open for writing, your most recent
modifications may be lost. This default buffering of data is disabled by setting the NF90_SHARE
flag when opening the dataset. But even if this flag is set, changes to attribute values or changes
made in define mode are not written out until NF90_SYNC or NF90_CLOSE is called.

4.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the names of not only the netCDF datasets, but also
the names of their dimensions, variables, and attributes. (Otherwise you would have to do
“inquire” calls.) The order of typical calls to read data from those variables in a netCDF dataset is:

 NF90_OPEN ! open existing netCDF dataset
 …
 NF90_INQ_DIMID ! get dimension IDs
 …
 NF90_INQ_VARID ! get variable IDs
 …
 NF90_GET_ATT ! get attribute values
 …
 NF90_GET_VAR ! get values of variables
 …
 NF90_CLOSE ! close netCDF dataset

First, a single call opens the netCDF dataset, given the dataset name, and returns a netCDF ID that
is used to refer to the open netCDF dataset in all subsequent calls.

Next, a call to NF90_INQ_DIMID for each dimension of interest gets the dimension ID from the
dimension name. Similarly, each required variable ID is determined from its name by a call to
NF90_INQ_VARID. Once variable IDs are known, variable attribute values can be retrieved using
the netCDF ID, the variable ID, and the desired attribute name as input to NF90_GET_ATT for each
desired attribute. Variable data values can be directly accessed from the netCDF dataset with calls
to NF90_GET_VAR.

Finally, the netCDF dataset is closed with NF90_CLOSE. There is no need to close a dataset open
only for reading.

Chapter 4: Use of the NetCDF Library 25
4.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing every
variable, without needing to know in advance the names of these variables. Similarly, the names
of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF datasets by
calling inquire functions. These return information about a whole netCDF dataset, a dimension, a
variable, or an attribute. The following template illustrates how they are used:

 NF90_OPEN ! open existing netCDF dataset
 …
 NF90_Inquire ! find out what is in it
 …
 NF90_Inquire_Dimension ! get dimension names, lengths
 …
 NF90_Inquire_Variable ! get variable names, types, shapes
 …
 NF90_INQ_ATTNAME ! get attribute names
 …
 NF90_Inquire_Attribute ! get attribute values
 …
 NF90_GET_ATT ! get attribute values
 …
 NF90_GET_VAR ! get values of variables
 …
 NF90_CLOSE ! close netCDF dataset

As in the previous example, a single call opens the existing netCDF dataset, returning a netCDF
ID. This netCDF ID is given to the NF90_Inquire routine, which returns the number of dimen-
sions, the number of variables, the number of global attributes, and the ID of the unlimited dimen-
sion, if there is one.

All the inquire functions are inexpensive to use and require no I/O, since the information they pro-
vide is stored in memory when a netCDF dataset is first opened.

Dimension IDs use consecutive integers, beginning at 1. Also dimensions, once created, cannot be
deleted. Therefore, knowing the number of dimension IDs in a netCDF dataset means knowing all
the dimension IDs: they are the integers 1, 2, 3, …up to the number of dimensions. For each
dimension ID, a call to the inquire function NF90_Inquire_Dimension returns the dimension
name and length.

Variable IDs are also assigned from consecutive integers 1, 2, 3, … up to the number of variables.
These can be used in NF90_Inquire_Variable calls to find out the names, types, shapes, and the
number of attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calls to NF90_INQ_ATTNAME

return the name for each attribute given the netCDF ID, variable ID, and attribute number. Armed
with the attribute name, a call to NF90_Inquire_Variablereturns its type and length. Given the

26
type and length, you can allocate enough space to hold the attribute values. Then a call to
NF90_GET_ATT returns the attribute values.

Once the IDs and shapes of netCDF variables are known, data values can be accessed by calling
NF90_GET_VAR.

4.4 Writing Data in an Existing NetCDF Dataset

With write access to an existing netCDF dataset, you can overwrite data values in existing vari-
ables or append more data to record variables along the unlimited (record) dimension. To append
more data to non-record variables requires changing the shape of such variables, which means
creating a new netCDF dataset, defining new variables with the desired shape, and copying data.
The netCDF data model was not designed to make such “schema changes” efficient or easy, so it
is best to specify the shapes of variables correctly when you create a netCDF dataset, and to antic-
ipate which variables will later grow by using the unlimited dimension in their definition.

The following code template lists a typical sequence of calls to overwrite some existing values
and add some new records to record variables in an existing netCDF dataset with known variable
names:

 NF90_OPEN ! open existing netCDF dataset
 …
 NF90_INQ_VARID ! get variable IDs
 …
 NF90_PUT_VAR ! provide new values for variables, if any
 …
 NF90_PUT_ATT ! provide new values for attributes, if any
 …
 NF90_CLOSE ! close netCDF dataset

A netCDF dataset is first opened by the NF90_OPEN call. This call puts the open dataset in data
mode, which means existing data values can be accessed and changed, existing attributes can be
changed, but no new dimensions, variables, or attributes can be added.

Next, calls to NF90_INQ_VARID get the variable ID from the name, for each variable you want to
write. Then each call to NF90_PUT_VAR writes data into a specified variable, either a single value
at a time, or a whole set of values at a time, depending on which variant of the interface is used.
The calls used to overwrite values of non-record variables are the same as are used to overwrite
values of record variables or append new data to record variables. The difference is that, with
record variables, the record dimension is extended by writing values that don’t yet exist in the
dataset. This extends all record variables at once, writing “fill values” for record variables for
which the data has not yet been written (but see 7.8 “Fill Values,” page 67 for how to specify dif-
ferent behavior).

Calls to NF90_PUT_ATT may be used to change the values of existing attributes, although data that
changes after a file is created is typically stored in variables rather than attributes.

Finally, you should explicitly close any netCDF datasets into which data has been written by call-

Chapter 4: Use of the NetCDF Library 27
ing NF90_CLOSE before program termination. Otherwise, modifications to the dataset may be lost.

4.5 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively altered. New dimensions, variables, and attributes
can be added or existing ones renamed, and existing attributes can be deleted. Existing dimen-
sions, variables, and attributes can be renamed. The following code template lists a typical
sequence of calls to add new netCDF components to an existing dataset:

 NF90_OPEN ! open existing netCDF dataset
 …
 NF90_REDEF ! put it into define mode
 …
 NF90_DEF_DIM ! define additional dimensions (if any)
 …
 NF90_DEF_VAR ! define additional variables (if any)
 …
 NF90_PUT_ATT ! define other attributes (if any)
 …
 NF90_ENDDEF ! check definitions, leave define mode
 …
 NF90_PUT_VAR ! provide new variable values
 …
 NF90_CLOSE ! close netCDF dataset

A netCDF dataset is first opened by the NF90_OPEN call. This call puts the open dataset in data
mode, which means existing data values can be accessed and changed, existing attributes can be
changed (so long as they do not grow), but nothing can be added. To add new netCDF dimensions,
variables, or attributes you must enter define mode, by calling NF90_REDEF. In define mode, call
NF90_DEF_DIM to define new dimensions, NF90_DEF_VAR to define new variables, and
NF90_PUT_ATT to assign new attributes to variables or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for consistency
and committing the changes to disk, by calling NF90_ENDDEF. If you do not wish to reenter data
mode, just call NF90_CLOSE, which will have the effect of first calling NF90_ENDDEF.

Until the NF90_ENDDEF call, you may back out of all the redefinitions made in define mode and
restore the previous state of the netCDF dataset by calling NF90_ABORT. You may also use the
NF90_ABORT call to restore the netCDF dataset to a consistent state if the call to NF90_ENDDEF

fails. If you have called NF90_CLOSE from definition mode and the implied call to NF90_ENDDEF

fails, NF90_ABORT will automatically be called to close the netCDF dataset and leave it in its pre-
vious consistent state (before you entered define mode).

At most one process should have a netCDF dataset open for writing at one time. The library is
designed to provide limited support for multiple concurrent readers with one writer, via disci-
plined use of the NF90_SYNC function and the NF90_SHARE flag. If a writer makes changes in
define mode, such as the addition of new variables, dimensions, or attributes, some means exter-
nal to the library is necessary to prevent readers from making concurrent accesses and to inform

28
readers to call NF90_SYNC before the next access.

4.6 Error Handling

The netCDF library provides the facilities needed to handle errors in a flexible way. Each netCDF
function returns an integer status value. If the returned status value indicates an error, you may
handle it in any way desired, from printing an associated error message and exiting to ignoring the
error indication and proceeding (not recommended!). For simplicity, the examples in this guide
check the error status and call a separate function to handle any errors.

The NF90_STRERROR function is available to convert a returned integer error status into an error
message string.

Occasionally, low-level I/O errors may occur in a layer below the netCDF library. For example, if
a write operation causes you to exceed disk quotas or to attempt to write to a device that is no
longer available, you may get an error from a layer below the netCDF library, but the resulting
write error will still be reflected in the returned status value.

4.7 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN interfaces
differ, depending on the operating system, the available compilers, and where the netCDF library
and include files are installed. Nevertheless, we provide here examples of how to compile and link
a program that uses the netCDF library on a Unix platform, so that you can adjust these examples
to fit your installation.

Every Fortran 90 procedure or module which references netCDF constants or procedures must
have access to the module information created when the netCDF module was compiled. The suf-
fix for this file depends on the compiler, but is often .MOD. Most Fortran 90 compilers do not allow
you to specify an alternative location for this file as you might the location of external libraries.
The simplest solution, therefore, is to create a symbolic link from the directory in which your
code resides to the location of the pre-compiled netCDF module. For example:

ln -s /usr/local/netcdf/src/f90/netcdf.mod .

You may then compile source files which reference netCDF constants or procedures.

f90 -c mymodule.f90

Unless the netCDF library is installed in a standard directory where the linker always looks, you
must use the -L and -l options to link an object file that uses the netCDF library. For example:

f90 -o myprogram myprogram.o -L/usr/local/netcdf/lib -lnetcdf

Chapter 5: Datasets 29
5 Datasets
This chapter presents the interfaces of the netCDF functions that deal with a netCDF dataset or
the whole netCDF library.

A netCDF dataset that has not yet been opened can only be referred to by its dataset name. Once a
netCDF dataset is opened, it is referred to by a netCDF ID, which is a small nonnegative integer
returned when you create or open the dataset. A netCDF ID is much like a file descriptor in C or a
logical unit number in FORTRAN. In any single program, the netCDF IDs of distinct open
netCDF datasets are distinct. A single netCDF dataset may be opened multiple times and will then
have multiple distinct netCDF IDs; however at most one of the open instances of a single netCDF
dataset should permit writing. When an open netCDF dataset is closed, the ID is no longer associ-
ated with a netCDF dataset.

Functions that deal with the netCDF library include:

• Get version of library.
• Get error message corresponding to a returned error code.

The operations supported on a netCDF dataset as a single object are:

• Create, given dataset name and whether to overwrite or not.
• Open for access, given dataset name and read or write intent.
• Put into define mode, to add dimensions, variables, or attributes.
• Take out of define mode, checking consistency of additions.
• Close, writing to disk if required.
• Inquire about the number of dimensions, number of variables, number of global attributes, and

ID of the unlimited dimension, if any.
• Synchronize to disk to make sure it is current.
• Set and unset nofill mode for optimized sequential writes.

After a summary of conventions used in describing the netCDF interfaces, the rest of this chapter
presents a detailed description of the interfaces for these operations.

5.1 NetCDF Library Interface Descriptions

Each interface description for a particular netCDF function in this and later chapters contains:

• a description of the purpose of the function;
• a Fortran 90 interface block that presents the type and order of the formal parameters to the

function;
• a description of each formal parameter in the Fortran 90 interface;
• a list of possible error conditions; and
• an example of a Fortran 90 program fragment calling the netCDF function (and perhaps other

netCDF functions).

30
The examples follow a simple convention for error handling, always checking the error status
returned from each netCDF function call and calling a HANDLE_ERR subroutine in case an error
was detected. For an example of such a subroutine, see Section 5.2 “Get error message corre-
sponding to error status: NF90_STRERROR,” page 30.

5.2 Get error message corresponding to error status: NF90_STRERROR

The function NF90_STRERROR returns a static reference to an error message string corresponding
to an integer netCDF error status or to a system error number, presumably returned by a previous
call to some other netCDF function. The list of netCDF error status codes is available in the
appropriate include file for each language binding.

Usage

function nf90_strerror(ncerr)
 integer, intent(in) :: ncerr
 character(len = 80) :: nf90_strerror

Errors

If you provide an invalid integer error status that does not correspond to any netCDF error mes-
sage or to any system error message (as understood by the system strerror function),
NF90_STRERROR returns a string indicating that there is no such error status.

Example

Here is an example of a simple error handling subroutine that uses NF90_STRERROR to print the
error message corresponding to the netCDF error status returned from any netCDF function call
and then exit:

subroutine handle_err(status)
 integer, intent (in) :: status

 if(status /= nf90_noerr) then
 print *, trim(nf90_strerror(status))
 stop “Stopped”
 end if
end subroutine handle_err

5.3 Get netCDF library version: NF90_INQ_LIBVERS

The function NF90_INQ_LIBVERS returns a string identifying the version of the netCDF library,
and when it was built.

ncerr An error status that might have been returned from a previous call to some
netCDF function.

Chapter 5: Datasets 31
Usage

function nf90_inq_libvers()
 character(len = 80) :: nf90_inq_libvers

Errors

This function takes no arguments, and returns no error status.

Example

Here is an example using NF90_INQ_LIBVERS to print the version of the netCDF library with
which the program is linked:

print *, trim(nf90_inq_libvers())

5.4 Create a NetCDF dataset: NF90_CREATE

This function creates a new netCDF dataset, returning a netCDF ID that can subsequently be used
to refer to the netCDF dataset in other netCDF function calls. The new netCDF dataset is opened
for write access and placed in define mode, ready for you to add dimensions, variables, and
attributes.

A creation mode flag specifies whether to overwrite any existing dataset with the same name and
whether access to the dataset is shared.

Usage

function nf90_create(path, cmode, ncid)
 character (len = *), intent(in) :: path
 integer, intent(in) :: cmode
 integer, optional, intent(in) :: initialsize
 integer, optional, intent(inout) :: chunksize
 integer, intent(out) :: ncid
 integer :: nf90_create

path The file name of the new netCDF dataset.

32
Errors

If no errors were detected, NF90_CREATE returns the value NF90_NOERR. Possible causes of errors
include:

• Passing a dataset name that includes a directory that does not exist.
• Specifying a dataset name of a file that exists and also specifying NF90_NOCLOBBER

• Specifying a meaningless value for the creation mode.
• Attempting to create a netCDF dataset in a directory where you don’t have permission to cre-

ate files.

Example

In this example we create a netCDF dataset named foo.nc; we want the dataset to be created in
the current directory only if a dataset with that name does not already exist:

cmode The creation mode. A zero value (or NF90_CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buffer
and cache accesses for efficiency.
Otherwise, the creation mode is NF90_NOCLOBBER, NF90_SHARE, or
IOR(NF90_NOCLOBBER, NF90_SHARE). Setting the NF90_NOCLOBBER flag
means you do not want to clobber (overwrite) an existing dataset; an error
(NF90_EEXIST) is returned if the specified dataset already exists. The
NF90_SHARE flag is appropriate when one process may be writing the dataset
and one or more other processes reading the dataset concurrently; it means
that dataset accesses are not buffered and caching is limited. Since the buff-
ering scheme is optimized for sequential access, programs that do not access
data sequentially may see some performance improvement by setting the
NF_SHARE flag.

ncid Returned netCDF ID.

The following optional arguments allow additional performance tuning.

initialsize The initial size of the file (in bytes) at creation time. A value of 0 causes the
file size to be computed when nf90_enddef is called.

chunksize Controls a space versus time trade-off, memory allocated in the netcdf
library versus number of system calls. Because of internal requirements, the
value may not be set to exactly the value requested. The actual value chosen
is returned.
The library chooses a system-dependent default value if
NF90_SIZEHINT_DEFAULT is supplied as input. If the "preferred I/O block
size" is available from the stat() system call as member st_blksize this
value is used. Lacking that, twice the system pagesize is used. Lacking a call
to discover the system pagesize, the default chunksize is set to 8192 bytes.
The chunksize is a property of a given open netcdf descriptor ncid, it is not a
persistent property of the netcdf dataset.

Chapter 5: Datasets 33
use netcdf
implicit none
integer :: ncid, status
…
status = nf90_create(path = “foo.nc”, cmode = nf90_noclobber, ncid = ncid)
if (status /= nf90_noerr) call handle_err(status)

5.5 Open a NetCDF Dataset for Access: NF90_OPEN

The function NF90_OPEN opens an existing netCDF dataset for access in data mode.

Usage

function nf90_open(path, mode, ncid, chunksize)
 character (len = *), intent(in) :: path
 integer, intent(in) :: mode
 integer, intent(out) :: ncid
 integer, optional, intent(inout) :: chunksize
 integer :: nf90_open

path File name for netCDF dataset to be opened.

mode A zero value (or NF90_NOWRITE) specifies the default behavior: open the
dataset with read-only access, buffering and caching accesses for efficiency
Otherwise, the creation mode is NF90_WRITE, NF90_SHARE, or
IOR(NF90_WRITE, NF90_SHARE). Setting the NF90_WRITE flag opens the
dataset with read-write access. (“Writing” means any kind of change to the
dataset, including appending or changing data, adding or renaming dimen-
sions, variables, and attributes, or deleting attributes.) The NF_SHARE flag is
appropriate when one process may be writing the dataset and one or more
other processes reading the dataset concurrently; it means that dataset
accesses are not buffered and caching is limited. Since the buffering scheme
is optimized for sequential access, programs that do not access data sequen-
tially may see some performance improvement by setting the NF90_SHARE

flag.

ncid Returned netCDF ID.

The following optional argument allows additional performance tuning.

34
Errors

NF90_OPEN returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The specified netCDF dataset does not exist.
• A meaningless mode was specified.

Example

Here is an example using NF90_OPEN to open an existing netCDF dataset named foo.nc for read-
only, non-shared access:

use netcdf
implicit none
integer :: ncid, status
…
status = nf90_open(path = “foo.nc”, cmode = nf90_nowrite, ncid = ncid)
if (status /= nf90_noerr) call handle_err(status)

5.6 Put Open NetCDF Dataset into Define Mode: NF90_REDEF

The function NF90_REDEF puts an open netCDF dataset into define mode, so dimensions, vari-
ables, and attributes can be added or renamed and attributes can be deleted.

Usage

function nf90_redef(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_redef

chunksize Controls a space versus time trade-off, memory allocated in the netcdf
library versus number of system calls. Because of internal requirements, the
value may not be set to exactly the value requested. The actual value chosen
is returned.
The library chooses a system-dependent default value if
NF90_SIZEHINT_DEFAULT is supplied as input. If the "preferred I/O block
size" is available from the stat() system call as member st_blksize this
value is used. Lacking that, twice the system pagesize is used. Lacking a call
to discover the system pagesize, the default chunksize is set to 8192 bytes.
The chunksize is a property of a given open netcdf descriptor ncid, it is not a
persistent property of the netcdf dataset.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

Chapter 5: Datasets 35
Errors

NF90_REDEF returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The specified netCDF dataset is already in define mode.
• The specified netCDF dataset was opened for read-only.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_REDEF to open an existing netCDF dataset named foo.nc and put
it into define mode:

use netcdf
implicit none
integer :: ncid, status
…
status = nf90_open(“foo.nc”, nf90_write, ncid) ! Open dataset
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_redef(ncid) ! Put the file in define mode
if (status /= nf90_noerr) call handle_err(status)

5.7 Leave Define Mode: NF90_ENDDEF

The function NF90_ENDDEF takes an open netCDF dataset out of define mode. The changes made
to the netCDF dataset while it was in define mode are checked and committed to disk if no prob-
lems occurred. Non-record variables may be initialized to a “fill value” as well (see Section 5.12
“Set Fill Mode for Writes: NF90_SET_FILL,” page 41). The netCDF dataset is then placed in
data mode, so variable data can be read or written.

This call may involve copying data under some circumstances. See Chapter 9 “NetCDF File
Structure and Performance,” page 83, for a more extensive discussion.

Usage

function nf90_enddef(ncid, h_minfree, v_align, v_minfree, r_align)
 integer, intent(in) :: ncid
 integer, optional, intent(in) :: h_minfree, v_align, v_minfree, r_align
 integer :: nf90_enddef

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

36
Errors

NF90_ENDDEF returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The specified netCDF dataset is not in define mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_ENDDEF to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

use netcdf
implicit none
integer :: ncid, status
…

The following arguments allow additional performance tuning. Note: these arguments expose
internals of the netcdf version 1 file format, and may not be available in future netcdf imple-
mentations.
The current netcdf file format has three sections: the "header" section, the data section for fixed
size variables, and the data section for variables which have an unlimited dimension (record
variables). The header begins at the beginning of the file. The index (offset) of the beginning of
the other two sections is contained in the header. Typically, there is no space between the sec-
tions. This causes copying overhead to accrue if one wishes to change the size of the sections,
as may happen when changing the names of things, text attribute values, adding attributes or
adding variables. Also, for buffered i/o, there may be advantages to aligning sections in certain
ways.

The following parameters allow one to control costs of future calls to
nf90_redef or nf90_enddef by requesting that some space be available at
the end of the section. The default value for both arguments is 0.

h_minfree Size of the pad (in bytes) at the end of the "header" section.

v_minfree Size of the pad (in bytes) at the end of the data section for fixed size vari-
ables.

The align parameters allow one to set the alignment of the beginning of the
corresponding sections. The beginning of the section is rounded up to an
index which is a multiple of the align parameter. The flag value
NF90_ALIGN_CHUNK tells the library to use the chunksize (see above) as the
align parameter. The default value for both arguments is 4 bytes.

v_align The alignment of the beginning of the data section for fixed size variables.

r_align The alignment of the beginning of the data section for variables which have
an unlimited dimension (record variables).

Chapter 5: Datasets 37
status = nf90_create(“foo.nc”, nf90_noclobber, ncid)
if (status /= nf90_noerr) call handle_err(status)
… ! create dimensions, variables, attributes
status = nf90_enddef(ncid)
if (status /= nf90_noerr) call handle_err(status)

5.8 Close an Open NetCDF Dataset: NF90_CLOSE

The function NF90_CLOSE closes an open netCDF dataset. If the dataset is in define mode,
NF90_ENDDEF will be called before closing. (In this case, if NF90_ENDDEF returns an error,
NF90_ABORT will automatically be called to restore the dataset to the consistent state before define
mode was last entered.) After an open netCDF dataset is closed, its netCDF ID may be reassigned
to the next netCDF dataset that is opened or created.

Usage

function nf90_close(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_close

Errors

NF90_CLOSE returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• Define mode was entered and the automatic call made to NF90_ENDDEF failed.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_CLOSE to finish the definitions of a new netCDF dataset named
foo.nc and release its netCDF ID:

use netcdf
implicit none
integer :: ncid, status
…
status = nf90_create(“foo.nc”, nf90_noclobber, ncid)
if (status /= nf90_noerr) call handle_err(status)
… ! create dimensions, variables, attributes
status = nf90_close(ncid)
if (status /= nf90_noerr) call handle_err(status)

ncid netCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

38
5.9 Inquire about an Open NetCDF Dataset: NF90_Inquire

The NF90_Inquire subroutine returns information about an open netCDF dataset, given its
netCDF ID. The subroutine can be called from either define mode or data mode, and returns val-
ues for any or all of the following: the number of dimensions, the number of variables, the num-
ber of global attributes, and the dimension ID of the dimension defined with unlimited length, if
any.

No I/O is performed when NF90_Inquire is called, since the required information is available in
memory for each open netCDF dataset.

Usage

function nf90_Inquire(ncid, nDimensions, nVariables, nAttributes, &
 unlimitedDimId)

 integer, intent(in) :: ncid
 integer, optional, intent(out) :: nDimensions, nVariables, nAttributes, &

 unlimitedDimId
 integer :: nf90_Inquire

Errors

Function NF90_Inquire returns the value NF90_NOERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errors include:

• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using Nf90_Inquire to find out about a netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status, nDims, nVars, nGlobalAtts, unlimDimID
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
status = Nf90_Inquire(ncid, nDims, nVars, nGlobalAtts, unlimdimid)

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

nDimensions Returned number of dimensions defined for this netCDF dataset.

nVariables Returned number of variables defined for this netCDF dataset.

nAttributes Returned number of global attributes defined for this netCDF dataset.

unlimited-
DimID

Returned ID of the unlimited dimension, if there is one for this netCDF
dataset. If no unlimited length dimension has been defined, -1 is returned.

Chapter 5: Datasets 39
if (status /= nf90_noerr) call handle_err(status)
status = Nf90_Inquire(ncid, nDimensions = nDims, &
 unlimitedDimID = unlimdimid)
if (status /= nf90_noerr) call handle_err(status)

5.10 Synchronize an Open NetCDF Dataset to Disk: NF90_SYNC

The function NF90_SYNC offers a way to synchronize the disk copy of a netCDF dataset with in-
memory buffers. There are two reasons you might want to synchronize after writes:

• To minimize data loss in case of abnormal termination, or
• To make data available to other processes for reading immediately after it is written. But note

that a process that already had the dataset open for reading would not see the number of
records increase when the writing process calls NF90_SYNC; to accomplish this, the reading
process must call NF90_SYNC.

This function is backward-compatible with previous versions of the netCDF library. The intent
was to allow sharing of a netCDF dataset among multiple readers and one writer, by having the
writer call NF90_SYNC after writing and the readers call NF90_SYNC before each read. For a writer,
this flushes buffers to disk. For a reader, it makes sure that the next read will be from disk rather
than from previously cached buffers, so that the reader will see changes made by the writing pro-
cess (e.g., the number of records written) without having to close and reopen the dataset. If you
are only accessing a small amount of data, it can be expensive in computer resources to always
synchronize to disk after every write, since you are giving up the benefits of buffering.

An easier way to accomplish sharing (and what is now recommended) is to have the writer and
readers open the dataset with the NF90_SHARE flag, and then it will not be necessary to call
NF90_SYNC at all. However, the NF90_SYNC function still provides finer granularity than the
NF90_SHARE flag, if only a few netCDF accesses need to be synchronized among processes.

It is important to note that changes to the ancillary data, such as attribute values, are not propa-
gated automatically by use of the NF90_SHARE flag. Use of the NF90_SYNC function is still
required for this purpose.

Sharing datasets when the writer enters define mode to change the data schema requires extra
care. In previous releases, after the writer left define mode, the readers were left looking at an old
copy of the dataset, since the changes were made to a new copy. The only way readers could see
the changes was by closing and reopening the dataset. Now the changes are made in place, but
readers have no knowledge that their internal tables are now inconsistent with the new dataset
schema. If netCDF datasets are shared across redefinition, some mechanism external to the
netCDF library must be provided that prevents access by readers during redefinition and causes
the readers to call NF90_SYNC before any subsequent access.

When calling NF90_SYNC, the netCDF dataset must be in data mode. A netCDF dataset in define
mode is synchronized to disk only when NF90_ENDDEF is called. A process that is reading a
netCDF dataset that another process is writing may call NF90_SYNC to get updated with the
changes made to the data by the writing process (e.g., the number of records written), without

40
having to close and reopen the dataset.

Data is automatically synchronized to disk when a netCDF dataset is closed, or whenever you
leave define mode.

Usage

function nf90_sync(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_sync

Errors

NF90_SYNC returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The netCDF dataset is in define mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_SYNC to synchronize the disk writes of a netCDF dataset named
foo.nc:

use netcdf
implicit none
integer :: ncid, status
…
status = nf90_open(“foo.nc”, nf90_write, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! write data or change attributes
…
status = NF90_SYNC(ncid)
if (status /= nf90_noerr) call handle_err(status)

5.11 Back Out of Recent Definitions: NF90_ABORT

You no longer need to call this function, since it is called automatically by NF90_CLOSE in case the
dataset is in define mode and something goes wrong with committing the changes. The function
NF90_ABORT just closes the netCDF dataset, if not in define mode. If the dataset is being created
and is still in define mode, the dataset is deleted. If define mode was entered by a call to
NF90_REDEF, the netCDF dataset is restored to its state before definition mode was entered and the
dataset is closed.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90 _CREATE.

Chapter 5: Datasets 41
Usage

function nf90_abort(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_abort

Errors

NF90_ABORT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• When called from define mode while creating a netCDF dataset, deletion of the dataset failed.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_ABORT to back out of redefinitions of a dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status, LatDimID
…
status = nf90_open(“foo.nc”, nf90_write, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_redef(ncid)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_def_dim(ncid, “Lat”, 18, LatDimID)
if (status /= nf90_noerr) then ! Dimension definition failed
 call handle_err(status)
 status = nf90_abort(ncid) ! Abort redefinitions
 if (status /= nf90_noerr) call handle_err(status)
end if

5.12 Set Fill Mode for Writes: NF90_SET_FILL

This function is intended for advanced usage, to optimize writes under some circumstances
described below. The function NF90_SET_FILL sets the fill mode for a netCDF dataset open for
writing and returns the current fill mode in a return parameter. The fill mode can be specified as
either NF90_FILL or NF90_NOFILL. The default behavior corresponding to NF90_FILL is that data
is pre-filled with fill values, that is fill values are written when you create non-record variables or
when you write a value beyond data that has not yet been written. This makes it possible to detect
attempts to read data before it was written. See Section 7.8 “Fill Values,” page 67, for more infor-
mation on the use of fill values. See Section 8.1 “Attribute Conventions,” page 69, for information
about how to define your own fill values.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

42
The behavior corresponding to NF90_NOFILL overrides the default behavior of prefilling data with
fill values. This can be used to enhance performance, because it avoids the duplicate writes that
occur when the netCDF library writes fill values that are later overwritten with data.

A value indicating which mode the netCDF dataset was already in is returned. You can use this
value to temporarily change the fill mode of an open netCDF dataset and then restore it to the pre-
vious mode.

After you turn on NF90_NOFILL mode for an open netCDF dataset, you must be certain to write
valid data in all the positions that will later be read. Note that nofill mode is only a transient prop-
erty of a netCDF dataset open for writing: if you close and reopen the dataset, it will revert to the
default behavior. You can also revert to the default behavior by calling NF90_SET_FILL again to
explicitly set the fill mode to NF90_FILL.

There are three situations where it is advantageous to set nofill mode:
1. Creating and initializing a netCDF dataset. In this case, you should set nofill mode before call-

ing NF90_ENDDEF and then write completely all non-record variables and the initial records of
all the record variables you want to initialize.

2. Extending an existing record-oriented netCDF dataset. Set nofill mode after opening the
dataset for writing, then append the additional records to the dataset completely, leaving no
intervening unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF dataset. Set nofill
mode before calling NF90_ENDDEF then write all the new variables completely.

If the netCDF dataset has an unlimited dimension and the last record was written while in nofill
mode, then the dataset may be shorter than if nofill mode was not set, but this will be completely
transparent if you access the data only through the netCDF interfaces.

The use of this feature may not be available (or even needed) in future releases. Programmers are
cautioned against heavy reliance upon this feature.

Usage

function nf90_set_fill(ncid, fillmode, old_mode)
 integer, intent(in) :: ncid, fillmode
 integer, intent(out) :: old_mode
 integer :: nf90_set_fill

Errors

NF90_SET_FILL returns the value NF90_NOERR if no errors occurred. Otherwise, the returned sta-

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

fillmode Desired fill mode for the dataset, either NF90_NOFILL or NF90_FILL.

old_mode Returned current fill mode of the dataset before this call, either
NF90_NOFILL or NF90_FILL.

Chapter 5: Datasets 43
tus indicates an error. Possible causes of errors include:

• The specified netCDF ID does not refer to an open netCDF dataset.
• The specified netCDF ID refers to a dataset open for read-only access.
• The fill mode argument is neither NF90_NOFILL nor NF90_FILL.

Example

Here is an example using NF90_SET_FILL to set nofill mode for subsequent writes of a netCDF
dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status, oldMode
…
status = nf90_open(“foo.nc”, nf90_write, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! Write data with prefilling behavior
…
status = nf90_set_fill(ncid, nf90_nofill, oldMode)
if (status /= nf90_noerr) call handle_err(status)
…
! Write data with no prefilling
…

44

Chapter 6: Dimensions 45
6 Dimensions
Dimensions for a netCDF dataset are defined when it is created, while the netCDF dataset is in
define mode. Additional dimensions may be added later by reentering define mode. A netCDF
dimension has a name and a length. At most one dimension in a netCDF dataset can have the
unlimited length, which means variables using this dimension can grow along this dimension.

There is a suggested limit (512) to the number of dimensions that can be defined in a single
netCDF dataset. The limit is the value of the constant NF90_MAX_DIMS. The purpose of the limit
is to make writing generic applications simpler. They need only provide an array of
NF90_MAX_DIMS dimensions to handle any netCDF dataset. The implementation of the netCDF
library does not enforce this advisory maximum, so it is possible to use more dimensions, if nec-
essary, but netCDF utilities that assume the advisory maximums may not be able to handle the
resulting netCDF datasets.

Ordinarily, the name and length of a dimension are fixed when the dimension is first defined. The
name may be changed later, but the length of a dimension (other than the unlimited dimension)
cannot be changed without copying all the data to a new netCDF dataset with a redefined dimen-
sion length.

A netCDF dimension in an open netCDF dataset is referred to by a small integer called a dimen-
sion ID. In the Fortran 90 interface, dimension IDs are 1, 2, 3, …, in the order in which the
dimensions were defined.

Operations supported on dimensions are:

• Create a dimension, given its name and length.
• Get a dimension ID from its name.
• Get a dimension’s name and length from its ID.
• Rename a dimension.

6.1 Create a Dimension: NF90_DEF_DIM

The function NF90_DEF_DIM adds a new dimension to an open netCDF dataset in define mode. It
returns (as an argument) a dimension ID, given the netCDF ID, the dimension name, and the
dimension length. At most one unlimited length dimension, called the record dimension, may be
defined for each netCDF dataset.

Usage

function nf90_def_dim(ncid, name, len, dimid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(in) :: len
 integer, intent(out) :: dimid
 integer :: nf90_def_dim

46
Errors

NF90_DEF_DIM returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The netCDF dataset is not in definition mode.
• The specified dimension name is the name of another existing dimension.
• The specified length is not greater than zero.
• The specified length is unlimited, but there is already an unlimited length dimension defined

for this netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_DEF_DIM to create a dimension named lat of length 18 and a
unlimited dimension named rec in a new netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status, LatDimID, RecordDimID
…
status = nf90_create(“foo.nc”, nf90_noclobber, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_def_dim(ncid, “Lat”, 18, LatDimID)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_def_dim(ncid, “Record”, nf90_unlimited, RecordDimID)
if (status /= nf90_noerr) call handle_err(status)

6.2 Get a Dimension ID from Its Name: NF90_INQ_DIMID

The function NF90_INQ_DIMID returns (as an argument) the ID of a netCDF dimension, given the
name of the dimension. If ndims is the number of dimensions defined for a netCDF dataset, each
dimension has an ID between 1 and ndims.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

name Dimension name. Must begin with an alphabetic character, followed by zero
or more alphanumeric characters including the underscore (‘_’). Case is sig-
nificant.

len Length of dimension; that is, number of values for this dimension as an
index to variables that use it. This should be either a positive integer or the
predefined constant NF90_UNLIMITED.

dimid Returned dimension ID.

Chapter 6: Dimensions 47
Usage

function nf90_inq_dimid(ncid, name, dimid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(out) :: dimid
 integer :: nf90_inq_dimid

Errors

NF90_INQ_DIMID returns the value NF90_NOERR if no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

• The name that was specified is not the name of a dimension in the netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_INQ_DIMID to determine the dimension ID of a dimension named
lat, assumed to have been defined previously in an existing netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status, LatDimID
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_inq_dimid(ncid, “Lat”, LatDimID)
if (status /= nf90_noerr) call handle_err(status)

6.3 Inquire about a Dimension: NF90_Inquire_Dimension

This function information about a netCDF dimension. Information about a dimension includes
its name and its length. The length for the unlimited dimension, if any, is the number of records
written so far.

Usage

function nf90_Inquire_Dimension(ncid, dimid, name, len)
 integer, intent(in) :: ncid, dimid

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

name Dimension name, a character string beginning with a letter and followed by
any sequence of letters, digits, or underscore (‘_’) characters. Case is signif-
icant in dimension names.

dimid Returned dimension ID.

48
 character (len = *), optional, intent(out) :: name
 integer, optional, intent(out) :: len
 integer :: nf90_Inquire_Dimension

Errors

These functions return the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The dimension ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_INQ_DIM to determine the length of a dimension named lat, and
the name and current maximum length of the unlimited dimension for an existing netCDF dataset
named foo.nc:

use netcdf
implicit none
integer :: ncid, status, LatDimID, RecordDimID
integer :: nLats, nRecords
character(len = nf90_max_name) :: RecordDimName
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
! Get ID of unlimited dimension
status = nf90_Inquire(ncid, unlimitedDimId = RecordDimID)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_inq_dimid(ncid, “Lat”, LatDimID)
if (status /= nf90_noerr) call handle_err(status)
! How many values of “lat” are there?
status = nf90_Inquire_Dimension(ncid, LatDimID, len = nLats)
if (status /= nf90_noerr) call handle_err(status)
! What is the name of the unlimited dimension, how many records are there?
status = nf90_Inquire_Dimension(ncid, RecordDimID, &
 name = RecordDimName, len = Records)

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

dimid Dimension ID, for example from a previous call to NF90_INQ_DIMID or
NF90_DEF_DIM.

name Returned dimension name. The caller must allocate space for the returned
name. The maximum possible length, in characters, of a dimension name is
given by the predefined constant NF90_MAX_NAME.

len Returned length of dimension. For the unlimited dimension, this is the cur-
rent maximum value used for writing any variables with this dimension, that
is the maximum record number.

Chapter 6: Dimensions 49
if (status /= nf90_noerr) call handle_err(status)

6.4 Rename a Dimension: NF90_RENAME_DIM

The function NF90_renames an existing dimension in a netCDF dataset open for writing. If the
new name is longer than the old name, the netCDF dataset must be in define mode. You cannot
rename a dimension to have the same name as another dimension.

Usage

function nf90_rename_dim(ncid, dimid, name)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(in) :: dimid
 integer :: nf90_rename_dim

Errors

NF90_RENAME_DIM returns the value NF90_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The new name is the name of another dimension.
• The dimension ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.
• The new name is longer than the old name and the netCDF dataset is not in define mode.

Example

Here is an example using NF90_RENAME_DIM to rename the dimension lat to latitude in an
existing netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status, LatDimID
…
status = nf90_open(“foo.nc”, nf90_write, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! Put in define mode so we can rename the dimension
status = nf90_redef(ncid)
if (status /= nf90_noerr) call handle_err(status)
! Get the dimension ID for “Lat”...
status = nf90_inq_dimid(ncid, “Lat”, LatDimID)

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

dimid Dimension ID, from a previous call to NF90_INQ_DIMID or NF90_DEF_DIM.

name New name for the dimension.

50
if (status /= nf90_noerr) call handle_err(status)
! ... and change the name to “Latitude”.
status = nf90_rename_dim(ncid, LatDimID, “Latitude”)
if (status /= nf90_noerr) call handle_err(status)
! Leave define mode
status = nf90_enddef(ncid)
if (status /= nf90_noerr) call handle_err(status)

Chapter 7: Variables 51
7 Variables
Variables for a netCDF dataset are defined when the dataset is created, while the netCDF dataset
is in define mode. Other variables may be added later by reentering define mode. A netCDF vari-
able has a name, a type, and a shape, which are specified when it is defined. A variable may also
have values, which are established later in data mode.

Ordinarily, the name, type, and shape are fixed when the variable is first defined. The name may
be changed, but the type and shape of a variable cannot be changed. However, a variable defined
in terms of the unlimited dimension can grow without bound in that dimension.

A netCDF variable in an open netCDF dataset is referred to by a small integer called a variable
ID.

Variable IDs reflect the order in which variables were defined within a netCDF dataset. Variable
IDs are 1, 2, 3, …, in the order in which the variables were defined. A function is available for
getting the variable ID from the variable name and vice-versa.

Attributes (see Chapter 8 “Attributes,” page 69) may be associated with a variable to specify such
properties as units.

Operations supported on variables are:

• Create a variable, given its name, data type, and shape.
• Get a variable ID from its name.
• Get a variable’s name, data type, shape, and number of attributes from its ID.
• Put a data value into a variable, given variable ID, indices, and value.
• Put an array of values into a variable, given variable ID, corner indices, edge lengths, and a

block of values.
• Put a subsampled or mapped array-section of values into a variable, given variable ID, corner

indices, edge lengths, stride vector, index mapping vector, and a block of values.
• Get a data value from a variable, given variable ID and indices.
• Get an array of values from a variable, given variable ID, corner indices, and edge lengths.
• Get a subsampled or mapped array-section of values from a variable, given variable ID, corner

indices, edge lengths, stride vector, and index mapping vector.
• Rename a variable.

7.1 Language Types Corresponding to NetCDF External Data Types

The following table gives the netCDF external data types and the corresponding type constants for
defining variables in the Fortran 90 interface:

52
The first column gives the netCDF external data type, which is the same as the CDL data type.
The next column gives the corresponding Fortran 90 parameter for use in netCDF functions (the
parameters are defined in the netCDF Fortran 90 module netcdf.f90). The last column gives the
number of bits used in the external representation of values of the corresponding type.

Note that there are no netCDF types corresponding to 64-bit integers or to characters wider than 8
bits in the current version of the netCDF library.

7.2 Create a Variable: NF90_DEF_VAR

The function NF90_DEF_VAR adds a new variable to an open netCDF dataset in define mode. It
returns (as an argument) a variable ID, given the netCDF ID, the variable name, the variable type,
the number of dimensions, and a list of the dimension IDs.

Usage

function nf90_def_var(ncid, name, xtype, dimids, varid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(in) :: xtype
 integer, dimension(:), intent(in) :: dimids
 integer :: nf90_def_var

netCDF/CDL Data
Type

Fortran 90 API
Mnemonic

Bits

byte NF90_BYTE 8

char NF90_CHAR 8

short NF90_SHORT 16

int NF90_INT 32

float NF90_FLOAT 32

double NF90_DOUBLE 64

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

name Name for this variable. Must begin with an alphabetic character, which is
followed by zero or more alphanumeric characters including the underscore
(‘_’). Case is significant.

xtype The external type for this variable, one of the set of predefined netCDF
external data types: NF90_BYTE, NF90_CHAR, NF90_SHORT, NF90_INT,
NF90_FLOAT, or NF90_DOUBLE.

Chapter 7: Variables 53
Errors

NF90_DEF_VAR returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The netCDF dataset is not in define mode.
• The specified variable name is the name of another existing variable.
• The specified type is not a valid netCDF type.
• The specified number of dimensions is negative or more than the constant

NF90_MAX_VAR_DIMS, the maximum number of dimensions permitted for a netCDF variable.
• One or more of the dimension IDs in the list of dimensions is not a valid dimension ID for the

netCDF dataset.
• The number of variables would exceed the constant NF90_MAX_VARS, the maximum number

of variables permitted in a netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_DEF_VAR to create a variable named rh of type double with three
dimensions, time, lat, and lon in a new netCDF dataset named foo.nc:

 use netcdf
implicit none
integer :: status, ncid
integer :: LonDimId, LatDimId, TimeDimId
integer :: RhVarId
…
status = nf90_create(“foo.nc”, nf90_NoClobber, ncid)
if(status /= nf90_NoErr) call handle_error(status)
…
! Define the dimensions
status = nf90_def_dim(ncid, “lat”, 5, LatDimId)
if(status /= nf90_NoErr) call handle_error(status)
status = nf90_def_dim(ncid, “lon”, 10, LonDimId)
if(status /= nf90_NoErr) call handle_error(status)
status = nf90_def_dim(ncid, “time”, nf90_unlimited, TimeDimId)
if(status /= nf90_NoErr) call handle_error(status)
…
! Define the variable
status = nf90_def_var(ncid, “rh”, nf90_double, &
 (/ LonDimId, LatDimID, TimeDimID /), RhVarId)
if(status /= nf90_NoErr) call handle_error(status)

dimids Dimension ID(s) corresponding to this variable’s dimension(s). If the ID of
the unlimited dimension is included, it must be last. Optional argument dim-
ids may be a vector or, if the variable has only one dimension, a scalar; if
the argument is omitted the netCDF variable is defined as a scalar.

varid Returned variable ID

54
7.3 Get a Variable ID from Its Name: NF90_INQ_VARID

The function NF90_INQ_VARID returns the ID of a netCDF variable, given its name.

Usage

function nf90_inq_varid(ncid, name, varid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(out) :: varid
 integer :: nf90_inq_varid

Errors

NF90_INQ_VARID returns the value NF90_NOERR if no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

• The specified variable name is not a valid name for a variable in the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_INQ_VARID to find out the ID of a variable named rh in an exist-
ing netCDF dataset named foo.nc:

 use netcdf
implicit none
integer :: status, ncid, RhVarId
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, RhVarId)
if(status /= nf90_NoErr) call handle_err(status)

7.4 Get Information about a Variable from Its ID: NF90_Inquire_Variable

NF90_Inquire_Variable returns information about a netCDF variable given its ID. Information
about a variable includes its name, type, number of dimensions, a list of dimension IDs describing
the shape of the variable, and the number of variable attributes that have been assigned to the vari-
able.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

name Variable name for which ID is desired.

varid Returned variable ID.

Chapter 7: Variables 55
Usage

function nf90_Inquire_Variable(ncid, varid, name, xtype, ndims, dimids, nAtts)
 integer, intent(in) :: ncid, varid
 character (len = *), optional, intent(out) :: name
 integer, optional, intent(out) :: xtype, ndims
 integer, dimension(*), optional, intent(out) :: dimids
 integer, optional, intent(out) :: nAtts
 integer :: nf90_Inquire_Variable

Errors

Function NF90_Inquire_Variable returns the value NF90_NOERR if no errors occurred. Other-
wise, the returned status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_Inquire_Variable to find out about a variable named rh in an
existing netCDF dataset named foo.nc:

 use netcdf
 implicit none

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

varid Variable ID.

name Returned variable name. The caller must allocate space for the returned
name. The maximum possible length, in characters, of a variable name is
given by the predefined constant NF90_MAX_NAME.

xtype Returned external type for this variable, one of the set of predefined netCDF
external data types. The valid netCDF external data types are NF90_BYTE,
NF90_CHAR, NF90_SHORT, NF90_INT, NF90_FLOAT, and NF90_DOUBLE.

ndims Returned number of dimensions for this variable. For example, 2 indicates a
matrix, 1 indicates a vector, and 0 means the variable is a scalar with no
dimensions.

dimids Returned vector of NDIMS dimension IDs corresponding to the variable
dimensions. The caller must allocate enough space for a vector of at least
NDIMS integers to be returned. The maximum possible number of dimen-
sions for a variable is given by the predefined constant NF90_MAX_VAR_DIMS.

natts Returned number of variable attributes assigned to this variable. Note that
you can get the number of global attributes by using the NF90_GLOBAL

pseudo-variable ID

56
 integer :: status, ncid, &
 RhVarId &
 numDims, numAtts
integer, dimension(nf90_max_var_dims) :: rhDimIds
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_error(status)
…
status = nf90_inq_varid(ncid, “rh”, RhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Var(ncid, RhVarId, ndims = numDims, natts = numAtts)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Var(ncid, RhVarId, dimids = rhDimIds(:numDims))
if(status /= nf90_NoErr) call handle_err(status)

7.5 Writing Data Values: NF90_PUT_VAR

The function NF90_PUT_VAR puts one or more data values into the variable of an open netCDF
dataset that is in data mode. Required inputs are the netCDF ID, the variable ID, and one or more
data values. Optional inputs may indicate the starting position of the data values in the netCDF
variable (argument start), the sampling frequency with which data values are written into the
netCDF variable (argument stride), and a mapping between the dimensions of the data array and
the netCDF variable (argument map). The values to be written are associated with the netCDF
variable by assuming that the first dimension of the netCDF variable varies fastest in the Fortran
90 interface. Data values converted to the external type of the variable, if necessary.

Take care when using the simplest forms of this interface with record variables when you don’t
specify how many records are to be written. If you try to write all the values of a record variable
into a netCDF file that has no record data yet (hence has 0 records), nothing will be written. Sim-
ilarly, if you try to write all of a record variable but there are more records in the file than you
assume, more data may be written to the file than you supply, which may result in a segmentation
violation.

Usage

function nf90_put_var(ncid, varid, values, start, count, stride, map)
 integer, intent(in) :: ncid, varid
any valid type, scalar or array of any rank, &

 intent(in) :: values
 integer, dimension(:), optional, intent(in) :: start, count, stride, map
 integer :: nf90_put_var

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

varid Variable ID.

Chapter 7: Variables 57
values The data value(s) to be written. The data may be of any type, and may be a
scalar or an array of any rank.
You cannot put CHARACTER data into a numeric variable or numeric data into
a text variable. For numeric data, if the type of data differs from the netCDF
variable type, type conversion will occur. See Section 3.3 “Type Conver-
sion,” page 24, for details.

start A vector of integers specifying the index in the variable where the first (or
only) of the data values will be written. The indices are relative to 1, so for
example, the first data value of a variable would have index (1, 1, …, 1).
The elements of start correspond, in order, to the variable’s dimensions.
Hence, if the variable is a record variable, the last index would correspond to
the starting record number for writing the data values.
By default, start(:) = 1.

count A vector of integers specifying the number of indices selected along each
dimension. To write a single value, for example, specify count as (1, 1,
…, 1). The elements of count correspond, in order, to the variable’s dimen-
sions. Hence, if the variable is a record variable, the last element of count
corresponds to a count of the number of records to write.
By default, count(:numDims) = shape(values) and
count(numDims + 1:) = 1, where numDims = size(shape(values)).

stride A vector of integers that specifies the sampling interval along each dimen-
sion of the netCDF variable. The elements of the stride vector correspond, in
order, to the netCDF variable’s dimensions (stride(1) gives the sampling
interval along the most rapidly varying dimension of the netCDF variable).
Sampling intervals are specified in type-independent units of elements (a
value of 1 selects consecutive elements of the netCDF variable along the
corresponding dimension, a value of 2 selects every other element, etc.).
By default, stride(:) = 1.

map A vector of integers that specifies the mapping between the dimensions of a
netCDF variable and the in-memory structure of the internal data array. The
elements of the index mapping vector correspond, in order, to the netCDF
variable’s dimensions (map(1) gives the distance between elements of the
internal array corresponding to the most rapidly varying dimension of the
netCDF variable). Distances between elements are specified in units of ele-
ments.
By default, edgeLengths = shape(values), and
map = (/ 1, (product(edgeLengths(:i)), &

 i = 1, size(edgeLengths) - 1) /),
that is, there is no mapping.
Use of Fortran 90 intrinsic functions (including reshape, transpose, and
spread) may let you avoid using this argument.

58
Errors

NF90_PUT_VAR returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The assumed or specified start, count, and stride generate an index which is out of range.

Note that no error checking is possible on the map vector.
• One or more of the specified values are out of the range of values representable by the external

data type of the variable.
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

(As noted above, another possible source of error is using this interface to write all the values of a
record variable without specifying the number of records. If there are a different number of
records in the file than you assume, the amount of data written may be different from what you
expect!)

Example

Here is an example using NF90_PUT_VAR to set the (4,3,2) element of the variable named rh to
0.5 in an existing netCDF dataset named foo.nc. For simplicity in this example, we assume that
we know that rh is dimensioned with lon, lat, and time, so we want to set the value of rh that
corresponds to the fourth lon value, the third lat value, and the second time value:

use netcdf
implicit none
integer :: ncId, rhVarId, status
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…ß
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_put_var(ncid, rhVarId, 0.5, start = (/ 4, 3, 2 /))
if(status /= nf90_NoErr) call handle_err(status)

In this example we use NF90_PUT_VAR to add or change all the values of the variable named rh to
0.5 in an existing netCDF dataset named foo.nc. We assume that we know that rh is dimen-
sioned with lon, lat, and time. In this example we query the netCDF file to discover the lengths
of the dimensions, then use the Fortran 90 intrinsic function reshape to create a temporary array
of data values which is the same shape as the netCDF variable.

use netcdf
implicit none
integer :: ncId, rhVarId,status, &
 lonDimID, latDimId, timeDimId, &
 numLons, numLats, numTimes, &
 i
integer, dimension(nf90_max_var_dims) :: dimIDs

Chapter 7: Variables 59
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
! How big is the netCDF variable, that is, what are the lengths of
! its constituent dimensions?
status = nf90_Inquire_Variable(ncid, rhVarId, dimids = dimIDs)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Dimension(ncid, dimIDs(1), len = numLons)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Dimension(ncid, dimIDs(2), len = numLats)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Dimension(ncid, dimIDs(3), len = numTimes)
if(status /= nf90_NoErr) call handle_err(status)
…
! Make a temporary array the same shape as the netCDF variable.
status = nf90_put_var(ncid, rhVarId, &
 reshape(&

(/ (0.5, i = 1, numLons * numLats * numTimes) /) , &
 shape = (/ numLons, numLats, numTimes /))
if(status /= nf90_NoErr) call handle_err(status)

Here is an example using NF90_PUT_VAR to add or change a section of the variable named rh to
0.5 in an existing netCDF dataset named foo.nc. For simplicity in this example, we assume that
we know that rh is dimensioned with lon, lat, and time, that there are ten lon values, five lat

values, and three time values, and that we want to replace all the values at the last time.

use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 10, numLats = 5, numTimes = 3
real, dimension(numLons, numLats) &
 :: rhValues
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
! Fill in all values at the last time
rhValues(:, :) = 0.5
status = nf90_put_var(ncid, rhVarId,rhvalues, &
 start = (/ 1, 1, numTimes /), &
 count = (/ numLats, numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)

Here is an example of using NF_PUT_VAR to write every other point of a netCDF variable named
rh having dimensions (6, 4).

use netcdf
implicit none

60
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) &
 :: rhValues = 0.5
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
…
! Fill in every other value using an array section
status = nf90_put_var(ncid, rhVarId, rhValues(::2, ::2), &
 stride = (/ 2, 2 /))
if(status /= nf90_NoErr) call handle_err(status)

The following map vector shows the default mapping between a 2x3x4 netCDF variable and an
internal array of the same shape:

real, dimension(2, 3, 4):: a ! same shape as netCDF variable
integer, dimension(3) :: map = (/ 1, 2, 6 /)
 ! netCDF dimension inter-element distance
 ! ---------------- ----------------------
 ! most rapidly varying 1
 ! intermediate 2 (= map(1)*2)
 ! most slowly varying 6 (= map(2)*3)

Using the map vector above obtains the same result as simply not passing a map vector at all.

Here is an example of using nf90_put_var to write a netCDF variable named rh whose dimen-
sions are the transpose of the Fortran 90 array:

use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
…
!Write transposed values: map vector would be (/ 1, numLats /) for
! no transposition
status = nf90_put_var(ncid, rhVarId,rhValues, map = (/ numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)

The same effect can be obtained more simply using Fortran 90 intrinsic functions:

use netcdf

Chapter 7: Variables 61
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_put_var(ncid, rhVarId, transpose(rhValues))
if(status /= nf90_NoErr) call handle_err(status)

7.6 Reading Data Values: NF90_GET_VAR

The function NF90_GET_VAR gets one or more data values from a netCDF variable of an open
netCDF dataset that is in data mode. Required inputs are the netCDF ID, the variable ID, and a
specification for the data values into which the data will be read. Optional inputs may indicate the
starting position of the data values in the netCDF variable (argument start), the sampling fre-
quency with which data values are read from the netCDF variable (argument stride), and a map-
ping between the dimensions of the data array and the netCDF variable (argument map). The
values to be read are associated with the netCDF variable by assuming that the first dimension of
the netCDF variable varies fastest in the Fortran 90 interface. Data values are converted from the
external type of the variable, if necessary.

Take care when using the simplest forms of this interface with record variables when you don’t
specify how many records are to be read. If you try to read all the values of a record variable into
an array but there are more records in the file than you assume, more data will be read than you
expect, which may cause a segmentation violation.

Usage

function nf90_get_var(ncid, varid, values, start, count, stride, map)
 integer, intent(in) :: ncid, varid
any valid type, scalar or array of any rank, &

 intent(out) :: values
 integer, dimension(:), optional, intent(in) :: start, count, stride, map
 integer :: nf90_get_var

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

varid Variable ID.

62
values The data value(s) to be read. The data may be of any type, and may be a sca-
lar or an array of any rank.
You cannot read CHARACTER data from a numeric variable or numeric data
from a text variable. For numeric data, if the type of data differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 24, for details.

start A vector of integers specifying the index in the variable from which the first
(or only) of the data values will be read. The indices are relative to 1, so for
example, the first data value of a variable would have index (1, 1, …, 1).
The elements of start correspond, in order, to the variable’s dimensions.
Hence, if the variable is a record variable, the last index would correspond to
the starting record number for writing the data values.
By default, start(:) = 1.

count A vector of integers specifying the number of indices selected along each
dimension. To read a single value, for example, specify count as (1, 1, …,

1). The elements of count correspond, in order, to the variable’s dimen-
sions. Hence, if the variable is a record variable, the last element of count
corresponds to a count of the number of records to read.
By default, count(:numDims) = shape(values) and
count(numDims + 1:) = 1, where numDims = size(shape(values)).

stride A vector of integers that specifies the sampling interval along each dimen-
sion of the netCDF variable. The elements of the stride vector correspond, in
order, to the netCDF variable’s dimensions (stride(1) gives the sampling
interval along the most rapidly varying dimension of the netCDF variable).
Sampling intervals are specified in type-independent units of elements (a
value of 1 selects consecutive elements of the netCDF variable along the
corresponding dimension, a value of 2 selects every other element, etc.).
By default, stride(:) = 1.

map A vector of integers that specifies the mapping between the dimensions of a
netCDF variable and the in-memory structure of the internal data array. The
elements of the index mapping vector correspond, in order, to the netCDF
variable’s dimensions (map(1) gives the distance between elements of the
internal array corresponding to the most rapidly varying dimension of the
netCDF variable). Distances between elements are specified in units of ele-
ments.
By default, edgeLengths = shape(values), and
map = (/ 1, (product(edgeLengths(:i)), &

 i = 1, size(edgeLengths) - 1) /),
that is, there is no mapping.
Use of Fortran 90 intrinsic functions (including reshape, transpose, and
spread) may let you avoid using this argument.

Chapter 7: Variables 63
Errors

NF90_GET_VAR returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The assumed or specified start, count, and stride generate an index which is out of

range. Note that no error checking is possible on the map vector.
• One or more of the specified values are out of the range of values representable by the desired

type.
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

(As noted above, another possible source of error is using this interface to read all the values of a
record variable without specifying the number of records. If there are more records in the file than
you assume, more data will be read than you expect!)

Example

Here is an example using NF90_GET_VAR to read the (4,3,2) element of the variable named rh

from an existing netCDF dataset named foo.nc. For simplicity in this example, we assume that
we know that rh is dimensioned with lon, lat, and time, so we want to read the value of rh that
corresponds to the fourth lon value, the third lat value, and the second time value:

use netcdf
implicit none
integer :: ncId, rhVarId, status
real :: rhValue
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
-
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_get_var(ncid, rhVarId, rhValue, start = (/ 4, 3, 2 /))
if(status /= nf90_NoErr) call handle_err(status)

In this example we use NF90_GET_VAR to read all the values of the variable named rh from an
existing netCDF dataset named foo.nc. We assume that we know that rh is dimensioned with
lon, lat, and time. In this example we query the netCDF file to discover the lengths of the
dimensions, then allocate a Fortran 90 array the same shape as the netCDF variable.

use netcdf
implicit none
integer :: ncId, rhVarId, &
 lonDimID, latDimId, timeDimId, &
 numLons, numLats, numTimes, &
 status
integer, dimension(nf90_max_var_dims) :: dimIDs
real, dimension(:, :, :), allocatable :: rhValues

64
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
! How big is the netCDF variable, that is, what are the lengths of
! its constituent dimensions?
status = nf90_Inquire_Variable(ncid, rhVarId, dimids = dimIDs)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Dimension(ncid, dimIDs(1), len = numLons)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Dimension(ncid, dimIDs(2), len = numLats)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_Inquire_Dimension(ncid, dimIDs(3), len = numTimes)
if(status /= nf90_NoErr) call handle_err(status)
allocate(rhValues(numLons, numLats, numTimes))
…
status = nf90_get_var(ncid, rhVarId, rhValues)
if(status /= nf90_NoErr) call handle_err(status)

Here is an example using NF90_GET_VAR to read a section of the variable named rh from an exist-
ing netCDF dataset named foo.nc. For simplicity in this example, we assume that we know that
rh is dimensioned with lon, lat, and time, that there are ten lon values, five lat values, and
three time values, and that we want to replace all the values at the last time.

use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 10, numLats = 5, numTimes = 3
real, dimension(numLons, numLats, numTimes) &
 :: rhValues
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
!Read the values at the last time by passing an array section
status = nf90_get_var(ncid, rhVarId, rhValues(:, :, 3), &
 start = (/ 1, 1, numTimes /), &
 count = (/ numLats, numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)

Here is an example of using NF_GET_VAR to read every other point of a netCDF variable named rh

having dimensions (6, 4).

use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) &
 :: rhValues

Chapter 7: Variables 65
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
…
! Read every other value into an array section
status = nf90_get_var(ncid, rhVarId, rhValues(::2, ::2) &
 stride = (/ 2, 2 /))
if(status /= nf90_NoErr) call handle_err(status)

The following map vector shows the default mapping between a 2x3x4 netCDF variable and an
internal array of the same shape:

real, dimension(2, 3, 4):: a ! same shape as netCDF variable
integer, dimension(3) :: map = (/ 1, 2, 6 /)
 ! netCDF dimension inter-element distance
 ! ---------------- ----------------------
 ! most rapidly varying 1
 ! intermediate 2 (= map(1)*2)
 ! most slowly varying 6 (= map(2)*3)

Using the map vector above obtains the same result as simply not passing a map vector at all.

Here is an example of using nf90_get_var to read a netCDF variable named rh whose dimen-
sions are the transpose of the Fortran 90 array:

use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
…
! Read transposed values: map vector would be (/ 1, numLats /) for
! no transposition
status = nf90_get_var(ncid, rhVarId,rhValues, map = (/ numLons, 1 /))
if(status /= nf90_NoErr) call handle_err(status)

The same effect can be obtained more simply, though using more memory, using Fortran 90
intrinsic functions:

use netcdf
implicit none
integer :: ncId, rhVarId, status
integer, parameter :: numLons = 6, numLats = 4

66
real, dimension(numLons, numLats) :: rhValues
! netCDF variable has dimensions (numLats, numLons)
real, dimension(numLons, numLats) :: tempValues
…
status = nf90_open(“foo.nc”, nf90_NoWrite, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_get_var(ncid, rhVarId, tempValues))
if(status /= nf90_NoErr) call handle_err(status)
rhValues(:, :) = transpose(tempValues)

7.7 Reading and Writing Character String Values

Character strings are not a primitive netCDF external data type, in part because FORTRAN does
not support the abstraction of variable-length character strings (the FORTRAN LEN function
returns the static length of a character string, not its dynamic length). As a result, a character
string cannot be written or read as a single object in the netCDF interface. Instead, a character
string must be treated as an array of characters, and array access must be used to read and write
character strings as variable data in netCDF datasets. Furthermore, variable-length strings are not
supported by the netCDF interface except by convention; for example, you may treat a zero byte
as terminating a character string, but you must explicitly specify the length of strings to be read
from and written to netCDF variables.

Character strings as attribute values are easier to use, since the strings are treated as a single unit
for access. However, the value of a character-string attribute is still an array of characters with an
explicit length that must be specified when the attribute is defined.

When you define a variable that will have character-string values, use a character-position dimen-
sion as the most quickly varying dimension for the variable (the first dimension for the variable in
Fortran 90). The length of the character-position dimension will be the maximum string length of
any value to be stored in the character-string variable. Space for maximum-length strings will be
allocated in the disk representation of character-string variables whether you use the space or not.
If two or more variables have the same maximum length, the same character-position dimension
may be used in defining the variable shapes.

To write a character-string value into a character-string variable, use either entire variable access
or array access. The latter requires that you specify both a corner and a vector of edge lengths.
The character-position dimension at the corner should be one for Fortran 90. If the length of the
string to be written is n, then the vector of edge lengths will specify n in the character-position
dimension, and one for all the other dimensions: (n, 1, 1, …, 1).

In Fortran 90, fixed-length strings may be written to a netCDF dataset without a terminating char-
acter, to save space. Variable-length strings should follow the C convention of writing strings with
a terminating zero byte so that the intended length of the string can be determined when it is later
read by either C or Fortran 90 programs.

Chapter 7: Variables 67
7.8 Fill Values

What happens when you try to read a value that was never written in an open netCDF dataset?
You might expect that this should always be an error, and that you should get an error message or
an error status returned. You do get an error if you try to read data from a netCDF dataset that is
not open for reading, if the variable ID is invalid for the specified netCDF dataset, or if the speci-
fied indices are not properly within the range defined by the dimension lengths of the specified
variable. Otherwise, reading a value that was not written returns a special fill value used to fill in
any undefined values when a netCDF variable is first written.

You may ignore fill values and use the entire range of a netCDF external data type, but in this case
you should make sure you write all data values before reading them. If you know you will be writ-
ing all the data before reading it, you can specify that no prefilling of variables with fill values will
occur by calling writing. This may provide a significant performance gain for netCDF writes.

The variable attribute _FillValue may be used to specify the fill value for a variable. There are
default fill values for each type, defined in module netcdf: NF90_FILL_CHAR, NF90_FILL_INT1
(same as NF90_FILL_BYTE), NF90_FILL_INT2 (same as NF90_FILL_SHORT), NF90_FILL_INT,
NF90_FILL_REAL (same as NF90_FILL_FLOAT), and NF90_FILL_DOUBLE

The netCDF byte and character types have different default fill values. The default fill value for
characters is the zero byte, a useful value for detecting the end of variable-length C character
strings. If you need a fill value for a byte variable, it is recommended that you explicitly define an
appropriate _FillValue attribute, as generic utilities such as ncdump will not assume a default fill
value for byte variables.

Type conversion for fill values is identical to type conversion for other values: attempting to con-
vert a value from one type to another type that can’t represent the value results in a range error.
Such errors may occur on writing or reading values from a larger type (such as double) to a
smaller type (such as float), if the fill value for the larger type cannot be represented in the smaller
type.

7.9 Rename a Variable: NF90_RENAME_VAR

The function NF90_RENAME_VAR changes the name of a netCDF variable in an open netCDF
dataset. If the new name is longer than the old name, the netCDF dataset must be in define mode.
You cannot rename a variable to have the name of any existing variable.

Usage

function nf90_rename_var(ncid, varid, newname)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: newname
 integer :: nf90_rename_var

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

68
Errors

NF90_RENAME_VAR returns the value NF90_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The new name is in use as the name of another variable.
• The variable ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_RENAME_VAR to rename the variable rh to rel_hum in an existing
netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncId, rhVarId, status
…
status = nf90_open(“foo.nc”, nf90_Write, ncid)
if(status /= nf90_NoErr) call handle_err(status)
…
status = nf90_inq_varid(ncid, “rh”, rhVarId)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_redef(ncid) ! Enter define mode to change variable name
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_rename_var(ncid, rhVarId, “rel_hum”)
if(status /= nf90_NoErr) call handle_err(status)
status = nf90_enddef(ncid) ! Leave define mode
if(status /= nf90_NoErr) call handle_err(status)

varid Variable ID.

newname New name for the specified variable.

Chapter 8: Attributes 69
8 Attributes
Attributes may be associated with each netCDF variable to specify such properties as units, spe-
cial values, maximum and minimum valid values, scaling factors, and offsets. Attributes for a
netCDF dataset are defined when the dataset is first created, while the netCDF dataset is in define
mode. Additional attributes may be added later by reentering define mode. A netCDF attribute has
a netCDF variable to which it is assigned, a name, a type, a length, and a sequence of one or more
values. An attribute is designated by its variable ID and name. When an attribute name is not
known, it may be designated by its variable ID and number in order to determine its name, using
the function NF90_INQ_ATTNAME.

The attributes associated with a variable are typically defined immediately after the variable is
created, while still in define mode. The data type, length, and value of an attribute may be changed
even when in data mode, as long as the changed attribute requires no more space than the attribute
as originally defined.

It is also possible to have attributes that are not associated with any variable. These are called glo-
bal attributes and are identified by using NF90_GLOBAL as a variable pseudo-ID. Global attributes
are usually related to the netCDF dataset as a whole and may be used for purposes such as provid-
ing a title or processing history for a netCDF dataset.

Operations supported on attributes are:

• Create an attribute, given its variable ID, name, data type, length, and value.
• Get attribute’s data type and length from its variable ID and name.
• Get attribute’s value from its variable ID and name.
• Copy attribute from one netCDF variable to another.
• Get name of attribute from its number.
• Rename an attribute.
• Delete an attribute.

8.1 Attribute Conventions

Names commencing with underscore (‘_’) are reserved for use by the netCDF library. Most
generic applications that process netCDF datasets assume standard attribute conventions and it is
strongly recommended that these be followed unless there are good reasons for not doing so.
Below we list the names and meanings of recommended standard attributes that have proven use-
ful. Note that some of these (e.g. units, valid_range, scale_factor) assume numeric data and
should not be used with character data.

70
units A character string that specifies the units used for the variable’s data. Uni-
data has developed a freely-available library of routines to convert
between character string and binary forms of unit specifications and to per-
form various useful operations on the binary forms. This library is used in
some netCDF applications. Using the recommended units syntax permits
data represented in conformable units to be automatically converted to
common units for arithmetic operations. See Appendix A “Units,”
page 105, for more information.

long_name A long descriptive name. This could be used for labeling plots, for exam-
ple. If a variable has no long_name attribute assigned, the variable name
should be used as a default.

valid_min A scalar specifying the minimum valid value for this variable.

valid_max A scalar specifying the maximum valid value for this variable.

valid_range A vector of two numbers specifying the minimum and maximum valid val-
ues for this variable, equivalent to specifying values for both valid_min

and valid_max attributes. Any of these attributes define the valid range.
The attribute valid_range must not be defined if either valid_min or
valid_max is defined.

Generic applications should treat values outside the valid range as miss-
ing. The type of each valid_range, valid_min and valid_max attribute
should match the type of its variable (except that for byte data, these can
be of a signed integral type to specify the intended range).

If neither valid_min, valid_max nor valid_range is defined then
generic applications should define a valid range as follows. If the data type
is byte and _FillValue is not explicitly defined, then the valid range
should include all possible values. Otherwise, the valid range should
exclude the _FillValue (whether defined explicitly or by default) as fol-
lows. If the _FillValue is positive then it defines a valid maximum, other-
wise it defines a valid minimum. For integer types, there should be a
difference of 1 between the _FillValue and this valid minimum or maxi-
mum. For floating point types, the difference should be twice the mini-
mum possible (1 in the least significant bit) to allow for rounding error.

scale_factor If present for a variable, the data are to be multiplied by this factor after the
data are read by the application that accesses the data.

Chapter 8: Attributes 71
add_offset If present for a variable, this number is to be added to the data after it is
read by the application that accesses the data. If both scale_factor and
add_offset attributes are present, the data are first scaled before the offset
is added. The attributes scale_factor and add_offset can be used
together to provide simple data compression to store low-resolution float-
ing-point data as small integers in a netCDF dataset. When scaled data are
written, the application should first subtract the offset and then divide by
the scale factor.

When scale_factor and add_offset are used for packing, the associ-
ated variable (containing the packed data) is typically of type byte or short,
whereas the unpacked values are intended to be of type float or double.
The attributes scale_factor and add_offset should both be of the type
intended for the unpacked data, e.g. float or double.

_FillValue The _FillValue attribute specifies the fill value used to pre-fill disk space
allocated to the variable. Such pre-fill occurs unless nofill mode is set
using NF90_SET_FILL. See Section 5.12 “Set Fill Mode for Writes:
NF90_SET_FILL,” page 41, for details. The fill value is returned when
reading values that were never written. If _FillValue is defined then it
should be scalar and of the same type as the variable. It is not necessary to
define your own _FillValue attribute for a variable if the default fill
value for the type of the variable is adequate. However, use of the default
fill value for data type byte is not recommended. Note that if you change
the value of this attribute, the changed value applies only to subsequent
writes; previously written data are not changed.

Generic applications often need to write a value to represent undefined or
missing values. The fill value provides an appropriate value for this pur-
pose because it is normally outside the valid range and therefore treated as
missing when read by generic applications. It is legal (but not recom-
mended) for the fill value to be within the valid range.

See Section 7.8 “Fill Values,” page 67, for more information.

missing_value This attribute is not treated in any special way by the library or conforming
generic applications, but is often useful documentation and may be used
by specific applications. The missing_value attribute can be a scalar or
vector containing values indicating missing data. These values should all
be outside the valid range so that generic applications will treat them as
missing.

signedness Deprecated attribute, originally designed to indicate whether byte values
should be treated as signed or unsigned. The attributes valid_min and
valid_max may be used for this purpose. For example, if you intend that a
byte variable store only nonnegative values, you can use valid_min = 0

and valid_max = 255. This attribute is ignored by the netCDF library.

72
8.2 Create an Attribute: NF90_PUT_ATT

The function NF90_PUT_ATTadds or changes a variable attribute or global attribute of an open
netCDF dataset. If this attribute is new, or if the space required to store the attribute is greater than
before, the netCDF dataset must be in define mode.

FORTRAN_format A character array providing the format that should be used by FORTRAN
or Fortran 90 applications to print values for this variable. For example, if
you know a variable is only accurate to three significant digits, it would be
appropriate to define the FORTRAN_format attribute as "(G10.3)".

title A global attribute that is a character array providing a succinct description
of what is in the dataset.

history A global attribute for an audit trail. This is a character array with a line for
each invocation of a program that has modified the dataset. Well-behaved
generic netCDF applications should append a line containing: date, time of
day, user name, program name and command arguments.

Conventions If present, ‘Conventions’ is a global attribute that is a character array for
the name of the conventions followed by the dataset, in the form of a string
that is interpreted as a directory name relative to a directory that is a repos-
itory of documents describing sets of discipline-specific conventions. This
permits a hierarchical structure for conventions and provides a place where
descriptions and examples of the conventions may be maintained by the
defining institutions and groups. The conventions directory name is cur-
rently interpreted relative to the directory pub/netcdf/Conventions/ on
the host machine ftp.unidata.ucar.edu. Alternatively, a full URL spec-
ification may be used to name a WWW site where documents that describe
the conventions are maintained.

For example, if a group named NUWG agrees upon a set of conventions
for dimension names, variable names, required attributes, and netCDF rep-
resentations for certain discipline-specific data structures, they may store a
document describing the agreed-upon conventions in a dataset in the
NUWG/ subdirectory of the Conventions directory. Datasets that followed
these conventions would contain a global Conventions attribute with
value "NUWG".

Later, if the group agrees upon some additional conventions for a specific
subset of NUWG data, for example time series data, the description of the
additional conventions might be stored in the NUWG/Time_series/ subdi-
rectory, and datasets that adhered to these additional conventions would
use the global Conventions attribute with value "NUWG/Time_series",
implying that this dataset adheres to the NUWG conventions and also to
the additional NUWG time-series conventions.

Chapter 8: Attributes 73
Usage

Although it’s possible to create attributes of all types, text and double attributes are adequate for
most purposes.

function nf90_put_att(ncid, varid, name, values)
 integer, intent(in) :: ncid, varid
 character(len = *), intent(in) :: name
 any valid type, scalar or array of rank 1, &
 intent(in) :: values
 integer :: nf90_put_att

Errors

NF90_PUT_ATT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified netCDF type is invalid.
• The specified length is negative.
• The specified open netCDF dataset is in data mode and the specified attribute would expand.
• The specified open netCDF dataset is in data mode and the specified attribute does not already

exist.
• The specified netCDF ID does not refer to an open netCDF dataset.
• The number of attributes for this variable exceeds NF90_MAX_ATTRS

Example

Here is an example using NF90_PUT_ATT to add a variable attribute named valid_range for a
netCDF variable named rh and a global attribute named title to an existing netCDF dataset
named foo.nc:

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

varid Variable ID.

name Attribute name. Must begin with an alphabetic character, followed by zero
or more alphanumeric characters including the underscore (‘_’). Case is sig-
nificant. Attribute name conventions are assumed by some netCDF generic
applications, e.g., units as the name for a string attribute that gives the units
for a netCDF variable. A table of conventional attribute names is presented
in the earlier chapter on the netCDF interface.

values An array of attribute values. Values may be supplied as scalars or as arrays
of rank one (one dimensional vectors). The external data type of the attribute
is set to match the internal representation of the argument, that is if values
is a two byte integer array, the attribute will be of type NF90_INT2. Fortran
90 intrinsic functions can be used to convert attributes to the desired type.

74
use netcdf
implicit none
integer :: ncid, status, RHVarID
…
status = nf90_open(“foo.nc”, nf90_write, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! Enter define mode so we can add the attribute
status = nf90_redef(ncid)
if (status /= nf90_noerr) call handle_err(status)
! Get the variable ID for “rh”...
status = nf90_inq_varid(ncid, “rh”, RHVarID)
if (status /= nf90_noerr) call handle_err(status)
! ... put the range attribute, setting it to eight byte reals...
status = nf90_put_att(ncid, RHVarID, “valid_range”, real((/ 0, 100 /))
! ... and the title attribute.
if (status /= nf90_noerr) call handle_err(status)
status = nf90_put_att(ncid, RHVarID, “title”, “example netCDF dataset”))
if (status /= nf90_noerr) call handle_err(status)
! Leave define mode
status = nf90_enddef(ncid)
if (status /= nf90_noerr) call handle_err(status)

8.3 Get Information about an Attribute: NF90_Inquire_Att and
NF90_INQ_ATTNAME

The function NF90_Inquire_att returns information about a netCDF attribute given the variable
ID and attribute name. Information about an attribute includes its type, length, name, and number.
See NF90_GET_ATT for getting attribute values.

The function NF90_INQ_ATTNAME gets the name of an attribute, given its variable ID and number.
This function is useful in generic applications that need to get the names of all the attributes asso-
ciated with a variable, since attributes are accessed by name rather than number in all other
attribute functions. The number of an attribute is more volatile than the name, since it can change
when other attributes of the same variable are deleted. This is why an attribute number is not
called an attribute ID.

Usage

function nf90_Inquire_Attribute(ncid, varid, name, xtype, len, attnum)
 integer, intent(in) :: ncid, varid

character (len = *), intent(in) :: name
integer, intent(out), optional :: xtype, len, attnum
integer :: nf90_Inquire_Attribute

function nf90_inq_attname(ncid, varid, attnum, name)
 integer, intent(in) :: ncid, varid, attnum
 character (len = *), intent(out) :: name

Chapter 8: Attributes 75
 integer :: nf90_inq_attname

Errors

Each function returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.
• For NF90_INQ_ATTNAME, the specified attribute number is negative or more than the number of

attributes defined for the specified variable.

Example

Here is an example using NF90_Inquire_Att to inquire about the lengths of an attribute named
valid_range for a netCDF variable named rh and a global attribute named title in an existing
netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid, status
integer :: RHVarID ! Variable ID
integer :: validRangeLength, titleLength ! Attribute lengths
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
…

ncid NetCDF ID, from a previous call to NF_OPEN or NF90_CREATE.

varid Variable ID of the attribute’s variable, or NF90_GLOBAL for a global attribute.

name Attribute name, input except that for NF90_INQ_ATTNAME, this is where the
attribute name is returned.

xtype Returned attribute type, one of the set of predefined netCDF external data
types. The valid netCDF external data types are NF90_BYTE, NF90_CHAR,
N90_SHORT, NF90_INT, NF90_FLOAT, and NF90_DOUBLE.

len Returned number of values currently stored in the attribute. For a string-val-
ued attribute, this is the number of characters in the string.

attnum For NF90_INQ_ATTNAME, the input attribute number; for
NF90_Inquire_Attribute, the returned attribute number. The attributes for
each variable are numbered from 1 (the first attribute) to NATTS, where
NATTS is the number of attributes for the variable, as returned from a call to
NF90_Inquire_Variable.

(If you already know an attribute name, knowing its number is not very use-
ful, because accessing information about an attribute requires its name.)

76
! Get the variable ID for “rh”...
status = nf90_inq_varid(ncid, “rh”, RHVarID)
if (status /= nf90_noerr) call handle_err(status)
! ... get the length of the “valid_range” attribute...
status = nf90_Inquire_Att(ncid, RHVarID, “valid_range”, &
 len = validRangeLength)
if (status /= nf90_noerr) call handle_err(status)
! ... and the global title attribute.
status = nf90_Inquire_Att(ncid, nf90_global, “title”, len = titleLength)
if (status /= nf90_noerr) call handle_err(status)

8.4 Get Attribute’s Values: NF90_GET_ATT

Function nf90_get_att gets the value(s) of a netCDF attribute, given its variable ID and name.

Usage

function nf90_get_att(ncid, varid, name, values)
 integer, intent(in) :: ncid, varid
 character(len = *), intent(in) :: name
 any valid type, scalar or array of rank 1, &
 intent(out) :: values
 integer :: nf90_get_att

Errors

NF90_GET_ATT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

varid Variable ID of the attribute’s variable, or NF90_GLOBAL for a global attribute.

name Attribute name.

values Returned attribute values. All elements of the vector of attribute values are
returned, so you must provide enough space to hold them. If you don’t know
how much space to reserve, call NF90_Inquire_Att first to find out the
length of the attribute. If there is only a single attribute values may be a sca-
lar. If the attribute is of type character values should be a variable of type
character with the len Fortran 90 attribute set to an appropriate value (i.e.
character (len = 80) :: values). You cannot read character data from
a numeric variable or numeric data from a text variable. For numeric data, if
the type of data differs from the netCDF variable type, type conversion will
occur (see Section 3.3 “Type Conversion,” page 24, for details).

Chapter 8: Attributes 77
• One or more of the attribute values are out of the range of values representable by the desired
type.

Example

Here is an example using NF90_GET_ATT to determine the values of an attribute named
valid_range for a netCDF variable named rh and a global attribute named title in an existing
netCDF dataset named foo.nc. In this example, it is assumed that we don’t know how many val-
ues will be returned, so we first inquire about the length of the attributes to make sure we have
enough space to store them:

use netcdf
implicit none
integer :: ncid, status
integer :: RHVarID ! Variable ID
integer :: validRangeLength, titleLength ! Attribute lengths
real, dimension(:), allocatable, &
 :: validRange
character (len = 80) :: title
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! Find the lengths of the attributes
status = nf90_inq_varid(ncid, “rh”, RHVarID)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_Inquire_Att(ncid, RHVarID, “valid_range”, &
 len = validRangeLength)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_Inquire_Att(ncid, nf90_global, “title”, len = titleLength)
if (status /= nf90_noerr) call handle_err(status)
…
!Allocate space to hold attribute values, check string lengths
allocate(validRange(validRangeLength), stat = status)
if(status /= 0 .or. len(title) < titleLength)
 print *, “Not enough space to put attribute values.”
 exit
end if
! Read the attributes.
status = nf90_get_att(ncid, RHVarID, “valid_range”, validRange)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_get_att(ncid, nf90_global, “title”, title)
if (status /= nf90_noerr) call handle_err(status)

8.5 Copy Attribute from One NetCDF to Another: NF90_COPY_ATT

The function NF90_COPY_ATT copies an attribute from one open netCDF dataset to another. It can
also be used to copy an attribute from one variable to another within the same netCDF.

78
Usage

function nf90_copy_att(ncid_in, varid_in, name, ncid_out, varid_out)
 integer, intent(in) :: ncid_in, varid_in
 character (len = *), intent(in) :: name
 integer, intent(in) :: ncid_out, varid_out
 integer :: nf90_copy_att

Errors

NF90_COPY_ATT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

• The input or output variable ID is invalid for the specified netCDF dataset.
• The specified attribute does not exist.
• The output netCDF is not in define mode and the attribute is new for the output dataset is

larger than the existing attribute.
• The input or output netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using NF90_COPY_ATT to copy the variable attribute units from the variable
rh in an existing netCDF dataset named foo.nc to the variable avgrh in another existing netCDF
dataset named bar.nc, assuming that the variable avgrh already exists, but does not yet have a
units attribute:

use netcdf
implicit none
integer :: ncid1, ncid2, status
integer :: RHVarID, avgRHVarID ! Variable ID
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid1)

ncid_in The netCDF ID of an input netCDF dataset from which the attribute will be
copied, from a previous call to NF90_OPEN or NF90_CREATE.

varid_in ID of the variable in the input netCDF dataset from which the attribute will
be copied, or NF90_GLOBAL for a global attribute.

name Name of the attribute in the input netCDF dataset to be copied.

ncid_out The netCDF ID of the output netCDF dataset to which the attribute will be
copied, from a previous call to NF90_OPEN or NF90_CREATE. It is permissible
for the input and output netCDF IDs to be the same. The output netCDF
dataset should be in define mode if the attribute to be copied does not
already exist for the target variable, or if it would cause an existing target
attribute to grow.

varid_out ID of the variable in the output netCDF dataset to which the attribute will be
copied, or NF90_GLOBAL to copy to a global attribute.

Chapter 8: Attributes 79
if (status /= nf90_noerr) call handle_err(status)
status = nf90_open(“bar.nc”, nf90_write, ncid2)
if (status /= nf90_noerr) call handle_err(status)
…
! Find the IDs of the variables
status = nf90_inq_varid(ncid1, “rh”, RHVarID)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_inq_varid(ncid1, “avgrh”, avgRHVarID)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_redef(ncid2) ! Enter define mode
if (status /= nf90_noerr) call handle_err(status)
! Copy variable attribute from “rh” in file 1 to “avgrh” in file 1
status = nf90_copy_att(ncid1, RHVarID, “units”, ncid2, avgRHVarID)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_enddef(ncid2)
if (status /= nf90_noerr) call handle_err(status)

8.6 Rename an Attribute: NF90_RENAME_ATT

The function NF90_RENAME_ATT changes the name of an attribute. If the new name is longer than
the original name, the netCDF dataset must be in define mode. You cannot rename an attribute to
have the same name as another attribute of the same variable.

function nf90_rename_att(ncid, varid, curname, newname)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: curname, newname
 integer :: nf90_rename_att

Errors

NF90_RENAME_ATT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The specified variable ID is not valid.
• The new attribute name is already in use for another attribute of the specified variable.
• The specified netCDF dataset is in data mode and the new name is longer than the old name.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE

varid ID of the attribute’s variable, or NF90_GLOBAL for a global attribute

curname The current attribute name.

newname The new name to be assigned to the specified attribute. If the new name is
longer than the current name, the netCDF dataset must be in define mode.

80
Example

Here is an example using NF90_RENAME_ATT to rename the variable attribute units to Units for a
variable rh in an existing netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid1, status
integer :: RHVarID ! Variable ID
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! Find the IDs of the variables
status = nf90_inq_varid(ncid, “rh”, RHVarID)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_rename_att(ncid, RHVarID, “units”, “Units”)
if (status /= nf90_noerr) call handle_err(status)

8.7 Delete an Attribute: NF90_DEL_ATT

The function NF90_DEL_ATT deletes a netCDF attribute from an open netCDF dataset. The
netCDF dataset must be in define mode.

Usage

function nf90_del_att(ncid, varid, name)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: name
 integer :: nf90_del_att

Errors

NF90_DEL_ATT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The specified variable ID is not valid.
• The specified netCDF dataset is in data mode.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.

ncid NetCDF ID, from a previous call to NF90_OPEN or NF90_CREATE.

varid ID of the attribute’s variable, or NF90_GLOBAL for a global attribute.

name The original attribute name.

Chapter 8: Attributes 81
Example

Here is an example using NF90_DEL_ATT to delete the variable attribute Units for a variable rh in
an existing netCDF dataset named foo.nc:

use netcdf
implicit none
integer :: ncid1, status
integer :: RHVarID ! Variable ID
…
status = nf90_open(“foo.nc”, nf90_nowrite, ncid)
if (status /= nf90_noerr) call handle_err(status)
…
! Find the IDs of the variables
status = nf90_inq_varid(ncid, “rh”, RHVarID)
if (status /= nf90_noerr) call handle_err(status)
…
status = nf90_redef(ncid) ! Enter define mode
if (status /= nf90_noerr) call handle_err(status)
status = nf90_del_att(ncid, RHVarID, “Units”)
if (status /= nf90_noerr) call handle_err(status)
status = nf90_enddef(ncid)
if (status /= nf90_noerr) call handle_err(status)

82

Chapter 9: NetCDF File Structure and Performance 83
9 NetCDF File Structure and Performance
This chapter describes the file structure of a netCDF dataset in enough detail to aid in understand-
ing netCDF performance issues.

NetCDF is a data abstraction for array-oriented data access and a software library that provides a
concrete implementation of the interfaces that support that abstraction. The implementation pro-
vides a machine-independent format for representing arrays. Although the netCDF file format is
hidden below the interfaces, some understanding of the current implementation and associated file
structure may help to make clear why some netCDF operations are more expensive than others.

For a detailed description of the netCDF format, see Appendix B “File Format Specification,”
page 107. Knowledge of the format is not needed for reading and writing netCDF data or under-
standing most efficiency issues. Programs that use only the documented interfaces and that make
no assumptions about the format will continue to work even if the netCDF format is changed in
the future, because any such change will be made below the documented interfaces and will sup-
port earlier versions of the netCDF file format.

9.1 Parts of a NetCDF File

A netCDF dataset is stored as a single file comprising two parts:

• a header, containing all the information about dimensions, attributes, and variables except for
the variable data;

• a data part, comprising fixed-size data, containing the data for variables that don’t have an
unlimited dimension; and variable-size data, containing the data for variables that have an
unlimited dimension.

Both the header and data parts are represented in a machine-independent form. This form is very
similar to XDR (eXternal Data Representation), extended to support efficient storage of arrays of
non-byte data.

The header at the beginning of the file contains information about the dimensions, variables, and
attributes in the file, including their names, types, and other characteristics. The information about
each variable includes the offset to the beginning of the variable’s data for fixed-size variables or
the relative offset of other variables within a record. The header also contains dimension lengths
and information needed to map multidimensional indices for each variable to the appropriate off-
sets.

This header has no usable extra space; it is only as large as it needs to be for the dimensions, vari-
ables, and attributes (including all the attribute values) in the netCDF dataset. This has the advan-
tage that netCDF files are compact, requiring very little overhead to store the ancillary data that
makes the datasets self-describing. A disadvantage of this organization is that any operation on a
netCDF dataset that requires the header to grow (or, less likely, to shrink), for example adding
new dimensions or new variables, requires moving the data by copying it. This expense is

84
incurred when NF90_ENDDEF is called, after a previous call to NF90_REDEF. If you create all nec-
essary dimensions, variables, and attributes before writing data, and avoid later additions and
renamings of netCDF components that require more space in the header part of the file, you avoid
the cost associated with later changing the header.

When the size of the header is changed, data in the file is moved, and the location of data values in
the file changes. If another program is reading the netCDF dataset during redefinition, its view of
the file will be based on old, probably incorrect indexes. If netCDF datasets are shared across
redefinition, some mechanism external to the netCDF library must be provided that prevents
access by readers during redefinition, and causes the readers to call NF90_SYNC before any subse-
quent access.

The fixed-size data part that follows the header contains all the variable data for variables that do
not employ an unlimited dimension. The data for each variable is stored contiguously in this part
of the file. If there is no unlimited dimension, this is the last part of the netCDF file.

The record-data part that follows the fixed-size data consists of a variable number of fixed-size
records, each of which contains data for all the record variables. The record data for each variable
is stored contiguously in each record.

The order in which the variable data appears in each data section is the same as the order in which
the variables were defined, in increasing numerical order by netCDF variable ID. This knowledge
can sometimes be used to enhance data access performance, since the best data access is currently
achieved by reading or writing the data in sequential order.

9.2 The Extended XDR Layer

XDR is a standard for describing and encoding data and a library of functions for external data
representation, allowing programmers to encode data structures in a machine-independent way.
NetCDF employs an extended form of XDR for representing information in the header part and
the data parts. This extended XDR is used to write portable data that can be read on any other
machine for which the library has been implemented.

The cost of using a canonical external representation for data varies according to the type of data
and whether the external form is the same as the machine’s native form for that type.

For some data types on some machines, the time required to convert data to and from external
form can be significant. The worst case is reading or writing large arrays of floating-point data on
a machine that does not use IEEE floating-point as its native representation.

9.3 Large File Support

It is possible to write netCDF files that exceed 2 GB on platforms that have "Large File Support"
(LFS). Such files would be platform-independent to other LFS platforms, but if you call nc_open
to access data from such a file on an older platform without LFS, you would expect a "file too

Chapter 9: NetCDF File Structure and Performance 85
large" error.

There are important constraints on the structure of large netCDF files that result from the 32-bit
relative offsets that are part of the netCDF file format:

• If you don’t use the unlimited dimension, only one variable can exceed 2 Gbytes in size, but it
can be as large as the underlying file system permits. It must be the last variable in the dataset,
and the offset to the beginning of this variable must be less than about 2 Gbytes. For example,
the structure of the data might be something like:

netcdf bigfile1 {
 dimensions:
 x=2000;
 y=5000;
 z=10000;
 variables:
 double x(x); // coordinate variables
 double y(y);
 double z(z);
 double var(x, y, z); // 800 Gbytes
}

• If you use the unlimited dimension, any number of record variables may exceed 2 Gbytes in
size, as long as the offset of the start of each record variable within a record is less than about
2 Gbytes. For example, the structure of the data in a 2.4 Tbyte file might be something like:

netcdf bigfile2 {
 dimensions:
 x=2000;
 y=5000;
 z=10;
 t=UNLIMITED; // 1000 records, for example
 variables:
 double x(x); // coordinate variables
 double y(y);
 double z(z);
 double t(t);
 // 3 record variables, 2.4 Gbytes per record
 double var1(t, x, y, z);
 double var2(t, x, y, z);
 double var3(t, x, y, z);
}

9.4 The I/O Layer

An I/O layer implemented much like the C standard I/O (stdio) library is used by netCDF to read
and write portable data to netCDF datasets. Hence an understanding of the standard I/O library
provides answers to many questions about multiple processes accessing data concurrently, the use
of I/O buffers, and the costs of opening and closing netCDF files. In particular, it is possible to
have one process writing a netCDF dataset while other processes read it. Data reads and writes are

86
no more atomic than calls to stdio fread() and fwrite(). An NF90_SYNC call is analogous to the
fflush call in the C standard I/O library, writing unwritten buffered data so other processes can
read it; NF90_SYNC also brings header changes up-to-date (for example, changes to attribute val-
ues). NF90_SHARE is analogous to setting a stdio stream to be unbuffered with the _IONBF flag to
setvbuf.

As in the stdio library, flushes are also performed when “seeks” occur to a different area of the
file. Hence the order of read and write operations can influence I/O performance significantly.
Reading data in the same order in which it was written within each record will minimize buffer
flushes.

You should not expect netCDF data access to work with multiple writers having the same file
open for writing simultaneously.

It is possible to tune an implementation of netCDF for some platforms by replacing the I/O layer
with a different platform-specific I/O layer. This may change the similarities between netCDF and
standard I/O, and hence characteristics related to data sharing, buffering, and the cost of I/O oper-
ations.

The distributed netCDF implementation is meant to be portable. Platform-specific ports that fur-
ther optimize the implementation for better I/O performance are practical in some cases.

9.5 UNICOS Optimization

As was mentioned in the previous section, it is possible to replace the I/O layer in order to
increase I/O efficiency. This has been done for UNICOS, the operating system of Cray computers
similar to the Cray Y-MP.

Additionally, it is possible for the user to obtain even greater I/O efficiency through appropriate
setting of the NETCDF_FFIOSPEC environment variable. This variable specifies the Flexible File I/
O buffers for netCDF I/O when executing under the UNICOS operating system (the variable is
ignored on other operating systems). An appropriate specification can greatly increase the effi-
ciency of netCDF I/O—to the extent that it can surpass default FORTRAN binary I/O. Possible
specifications include the following:

bufa:336:2 2, asynchronous, I/O buffers of 336 blocks each (i.e., double buffering). This
is the default specification and favors sequential I/O.

cache:256:8 8, synchronous, 256-block buffers. This favors larger random accesses.

cachea:256:8
:2

8, asynchronous, 256-block buffers with a 2 block read-ahead/write-behind
factor. This also favors larger random accesses.

cachea:8:256
:0

256, asynchronous, 8-block buffers without read-ahead/write-behind. This
favors many smaller pages without read-ahead for more random accesses as
typified by slicing netCDF arrays.

Chapter 9: NetCDF File Structure and Performance 87
All of the options/configurations supported in CRI’s FFIO library are available through this mech-
anism. We recommend that you look at CRI’s I/O optimization guide for information on using
FFIO to it’s fullest. This mechanism is also compatible with CRI’s EIE I/O library.

Tuning the NETCDF_FFIOSPEC variable to a program’s I/O pattern can dramatically improve per-
formance. Speedups of two orders of magnitude have been seen.

cache:8:256,
cachea.sds:1
024:4:1

This is a two layer cache. The first (synchronous) layer is composed of 256
8-block buffers in memory, the second (asynchronous) layer is composed of
4 1024-block buffers on the SSD. This scheme works well when accesses
proceed through the dataset in random waves roughly 2x1024-blocks wide.

88

Chapter 10: NetCDF Utilities 89
10 NetCDF Utilities
One of the primary reasons for using the netCDF interface for applications that deal with arrays is
to take advantage of higher-level netCDF utilities and generic applications for netCDF data. Cur-
rently two netCDF utilities are available as part of the netCDF software distribution:

• ncdump reads a netCDF dataset and prints a textual representation of the information in the
dataset

• ncgen reads a textual representation of a netCDF dataset and generates the corresponding
binary netCDF file or a C or FORTRAN program to create the netCDF dataset

Users have contributed other netCDF utilities, and various visualization and analysis packages are
available that access netCDF data. For an up-to-date list of freely-available and commercial soft-
ware that can access or manipulate netCDF data, see the NetCDF Software list, http://
www.unidata.ucar.edu/packages/netcdf/software.html.

This chapter describes the ncgen and ncdump utilities. These tools convert between binary
netCDF datasets and a text representation of netCDF datasets. The output of ncdump and the input
to ncgen is a text description of a netCDF dataset in a tiny language known as CDL (network
Common data form Description Language).

10.1 CDL Syntax

Below is an example of CDL, describing a netCDF dataset with several named dimensions (lat,
lon, time), variables (z, t, p, rh, lat, lon, time), variable attributes (units, _FillValue,
valid_range), and some data.

netcdf foo { // example netCDF specification in CDL

dimensions:
lat = 10, lon = 5, time = unlimited;

variables:
 int lat(lat), lon(lon), time(time);
 float z(time,lat,lon), t(time,lat,lon);
 double p(time,lat,lon);
 int rh(time,lat,lon);

 lat:units = "degrees_north";
 lon:units = "degrees_east";
 time:units = "seconds";
 z:units = "meters";
 z:valid_range = 0., 5000.;
 p:_FillValue = -9999.;
 rh:_FillValue = -1;

data:
 lat = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90;

90
 lon = -140, -118, -96, -84, -52;
}

All CDL statements are terminated by a semicolon. Spaces, tabs, and newlines can be used freely
for readability. Comments may follow the double slash characters // on any line.

A CDL description consists of three optional parts: dimensions, variables, and data. The variable
part may contain variable declarations and attribute assignments.

A dimension is used to define the shape of one or more of the multidimensional variables
described by the CDL description. A dimension has a name and a length. At most one dimension
in a CDL description can have the unlimited length, which means a variable using this dimension
can grow to any length (like a record number in a file).

A variable represents a multidimensional array of values of the same type. A variable has a name,
a data type, and a shape described by its list of dimensions. Each variable may also have associ-
ated attributes (see below) as well as data values. The name, data type, and shape of a variable are
specified by its declaration in the variable section of a CDL description. A variable may have the
same name as a dimension; by convention such a variable contains coordinates of the dimension it
names.

An attribute contains information about a variable or about the whole netCDF dataset. Attributes
may be used to specify such properties as units, special values, maximum and minimum valid val-
ues, and packing parameters. Attribute information is represented by single values or arrays of
values. For example, units is an attribute represented by a character array such as celsius. An
attribute has an associated variable, a name, a data type, a length, and a value. In contrast to vari-
ables that are intended for data, attributes are intended for ancillary data (data about data).

In CDL, an attribute is designated by a variable and attribute name, separated by a colon (‘:’). It is
possible to assign global attributes to the netCDF dataset as a whole by omitting the variable name
and beginning the attribute name with a colon (‘:’). The data type of an attribute in CDL is
derived from the type of the value assigned to it. The length of an attribute is the number of data
values or the number of characters in the character string assigned to it. Multiple values are
assigned to non-character attributes by separating the values with commas (‘,’). All values
assigned to an attribute must be of the same type.

CDL names for variables, attributes, and dimensions may be any combination of alphabetic or
numeric characters as well as underscore (‘_’) , dash (‘-’), and dot (‘.’) characters, but names
beginning with ‘_’ are reserved for use by the library. Case is significant in CDL names. The
names for the primitive data types and their synonyms (char, byte, short, int, long, float,
real, double) are reserved words in CDL, so the names of variables, dimensions, and attributes
must not be type names.

The optional data section of a CDL description is where netCDF variables may be initialized. The
syntax of an initialization is simple:

variable = value_1, value_2, …;

Chapter 10: NetCDF Utilities 91
The comma-delimited list of constants may be separated by spaces, tabs, and newlines. For multi-
dimensional arrays, the last dimension varies fastest. Thus, row-order rather than column order is
used for matrices. If fewer values are supplied than are needed to fill a variable, it is extended with
the fill value. The types of constants need not match the type declared for a variable; coercions are
done to convert integers to floating point, for example. All meaningful type conversions are sup-
ported.

A special notation for fill values is supported: the _ character designates a fill value for variables.

10.2 CDL Data Types

The CDL data types are:

Except for the added data-type byte and the lack of the type qualifier unsigned, CDL supports
the same primitive data types as C. In declarations, type names may be specified in either upper or
lower case.

The byte type differs from the char type in that it is intended for eight-bit data, and the zero byte
has no special significance, as it may for character data. The ncgen utility converts byte declara-
tions to char declarations in the output C code and to BYTE, INTEGER*1, or similar platform-spe-
cific declaration in output FORTRAN code.

The short type holds values between -32768 and 32767. The ncgen utility converts short decla-
rations to short declarations in the output C code and to INTEGER*2 declaration in output FOR-
TRAN code.

The int type can hold values between -2147483648 and 2147483647. The ncgen utility converts
int declarations to int declarations in the output C code and to INTEGER declarations in output
FORTRAN code. In CDL declarations integer and long are accepted as synonyms for int.

The float type can hold values between about -3.4+38 and 3.4+38, with external representation
as 32-bit IEEE normalized single-precision floating-point numbers. The ncgen utility converts
float declarations to float declarations in the output C code and to REAL declarations in output

char Characters.

byte Eight-bit integers.

short 16-bit signed integers.

int 32-bit signed integers.

long (Deprecated, currently synonymous with int)

float IEEE single-precision floating point (32 bits).

real (Synonymous with float).

double IEEE double-precision floating point (64 bits).

92
FORTRAN code. In CDL declarations real is accepted as a synonym for float.

The double type can hold values between about -1.7+308 and 1.7+308, with external representa-
tion as 64-bit IEEE standard normalized double-precision, floating-point numbers. The ncgen

utility converts double declarations to double declarations in the output C code and to DOUBLE

PRECISION declarations in output FORTRAN code.

10.3 CDL Notation for Data Constants

This section describes the CDL notation for constants.

Attributes are initialized in the variables section of a CDL description by providing a list of
constants that determines the attribute’s type and length. (In the C and FORTRAN procedural
interfaces to the netCDF library, the type and length of an attribute must be explicitly provided
when it is defined.) CDL defines a syntax for constant values that permits distinguishing among
different netCDF types. The syntax for CDL constants is similar to C syntax, except that type suf-
fixes are appended to shorts and floats to distinguish them from ints and doubles.

A byte constant is represented by a single character or multiple character escape sequence
enclosed in single quotes. For example:

'a' // ASCII a
'\0' // a zero byte
'\n' // ASCII newline character
'\33' // ASCII escape character (33 octal)
'\x2b' // ASCII plus (2b hex)
'\376' // 377 octal = -127 (or 254) decimal

Character constants are enclosed in double quotes. A character array may be represented as a
string enclosed in double quotes. Multiple strings are concatenated into a single array of charac-
ters, permitting long character arrays to appear on multiple lines. To support multiple variable-
length string values, a conventional delimiter such as ‘,’ may be used, but interpretation of any
such convention for a string delimiter must be implemented in software above the netCDF library
layer. The usual escape conventions for C strings are honored. For example:

"a" // ASCII ‘a’
"Two\nlines\n" // a 10-character string with two embedded newlines
"a bell:\007" // a string containing an ASCII bell
"ab","cde" // the same as "abcde"

The form of a short constant is an integer constant with an ‘s’ or ‘S’ appended. If a short con-
stant begins with ‘0’, it is interpreted as octal. When it begins with ‘0x’, it is interpreted as a hexa-
decimal constant. For example:

2s // a short 2
0123s // octal
0x7ffs // hexadecimal

Chapter 10: NetCDF Utilities 93
The form of an int constant is an ordinary integer constant. If an int constant begins with ‘0’, it
is interpreted as octal. When it begins with ‘0x’, it is interpreted as a hexadecimal constant. Exam-
ples of valid int constants include:

-2
0123 // octal
0x7ff // hexadecimal
1234567890L // deprecated, uses old long suffix

The float type is appropriate for representing data with about seven significant digits of preci-
sion. The form of a float constant is the same as a C floating-point constant with an ‘f’ or ‘F’
appended. A decimal point is required in a CDL float to distinguish it from an integer. For exam-
ple, the following are all acceptable float constants:

-2.0f
3.14159265358979f // will be truncated to less precision
1.f
.1f

The double type is appropriate for representing floating-point data with about 16 significant dig-
its of precision. The form of a double constant is the same as a C floating-point constant. An
optional ‘d’ or ‘D’ may be appended. A decimal point is required in a CDL double to distinguish
it from an integer. For example, the following are all acceptable double constants:

-2.0
3.141592653589793
1.0e-20
1.d

10.4ncgen

The ncgen tool generates a netCDF file or a C or FORTRAN program that creates a netCDF
dataset. If no options are specified in invoking ncgen, the program merely checks the syntax of
the CDL input, producing error messages for any violations of CDL syntax.

UNIX syntax for invoking ncgen:

ncgen [-b] [-o netcdf-file] [-c] [-f] [-n] [input-file]

where:

-b Create a (binary) netCDF file. If the ‘-o’ option is absent, a default file
name will be constructed from the netCDF name (specified after the
netcdf keyword in the input) by appending the ‘.nc’ extension. Warn-
ing: if a file already exists with the specified name it will be overwrit-
ten.

94
Examples

Check the syntax of the CDL file foo.cdl:

ncgen foo.cdl

From the CDL file foo.cdl, generate an equivalent binary netCDF file named bar.nc:

ncgen -o bar.nc foo.cdl

From the CDL file foo.cdl, generate a C program containing netCDF function invocations that
will create an equivalent binary netCDF dataset:

ncgen -c foo.cdl > foo.c

10.5ncdump

The ncdump tool generates the CDL text representation of a netCDF dataset on standard output,
optionally excluding some or all of the variable data in the output. The output from ncdump is
intended to be acceptable as input to ncgen. Thus ncdump and ncgen can be used as inverses to
transform data representation between binary and text representations.

ncdump may also be used as a simple browser for netCDF datasets, to display the dimension
names and lengths; variable names, types, and shapes; attribute names and values; and optionally,
the values of data for all variables or selected variables in a netCDF dataset.

ncdump defines a default format used for each type of netCDF variable data, but this can be over-

-o netcdf-file Name for the netCDF file created. If this option is specified, it implies the
‘-b’ option. (This option is necessary because netCDF files are direct-
access files created with seek calls, and hence cannot be written to stan-
dard output.)

-c Generate C source code that will create a netCDF dataset matching the
netCDF specification. The C source code is written to standard output.
This is only useful for relatively small CDL files, since all the data is
included in variable initializations in the generated program.

-f Generate FORTRAN source code that will create a netCDF dataset match-
ing the netCDF specification. The FORTRAN source code is written to
standard output. This is only useful for relatively small CDL files, since all
the data is included in variable initializations in the generated program.

-n Deprecated. Like the ‘-b’ option, except creates a netCDF file with a
‘.cdf’ extension instead of an ‘.nc’ extension, in the absence of an output
filename specified by the ‘-o’ option. This option is only supported for
backward compatibility.

Chapter 10: NetCDF Utilities 95
ridden if a C_format attribute is defined for a netCDF variable. In this case, ncdump will use the
C_format attribute to format values for that variable. For example, if floating-point data for the
netCDF variable Z is known to be accurate to only three significant digits, it might be appropriate
to use this variable attribute:

Z:C_format = "%.3g"

ncdump uses ‘_’ to represent data values that are equal to the _FillValue attribute for a variable,
intended to represent data that has not yet been written. If a variable has no _FillValue attribute,
the default fill value for the variable type is used unless the variable is of byte type.

UNIX syntax for invoking ncdump:

ncdump [-c | -h] [-v var1,…] [-b lang] [-f lang]
[-l len] [-p fdig[,ddig]] [-n name] [input-file]

where:

 -c Show the values of coordinate variables (variables that are also dimensions)
as well as the declarations of all dimensions, variables, and attribute values.
Data values of non-coordinate variables are not included in the output. This
is often the most suitable option to use for a brief look at the structure and
contents of a netCDF dataset.

-h Show only the header information in the output, that is, output only the dec-
larations for the netCDF dimensions, variables, and attributes of the input
file, but no data values for any variables. The output is identical to using the
‘-c’ option except that the values of coordinate variables are not included.
(At most one of ‘-c’ or ‘-h’ options may be present.)

-v var1,… The output will include data values for the specified variables, in addition to
the declarations of all dimensions, variables, and attributes. One or more
variables must be specified by name in the comma-delimited list following
this option. The list must be a single argument to the command, hence can-
not contain blanks or other white space characters. The named variables
must be valid netCDF variables in the input-file. The default, without this
option and in the absence of the ‘-c’ or ‘-h’ options, is to include data val-
ues for all variables in the output.

-b lang A brief annotation in the form of a CDL comment (text beginning with the
characters ‘//’) will be included in the data section of the output for each
‘row’ of data, to help identify data values for multidimensional variables. If
lang begins with ‘C’ or ‘c’, then C language conventions will be used (zero-
based indices, last dimension varying fastest). If lang begins with ‘F’ or ‘f’,
then FORTRAN language conventions will be used (one-based indices, first
dimension varying fastest). In either case, the data will be presented in the
same order; only the annotations will differ. This option may be useful for
browsing through large volumes of multidimensional data.

96
Examples

Look at the structure of the data in the netCDF dataset foo.nc:

ncdump -c foo.nc

Produce an annotated CDL version of the structure and data in the netCDF dataset foo.nc, using
C-style indexing for the annotations:

-f lang Full annotations in the form of trailing CDL comments (text beginning with
the characters ‘//’) for every data value (except individual characters in
character arrays) will be included in the data section. If lang begins with ‘C’
or ‘c’, then C language conventions will be used (zero-based indices, last
dimension varying fastest). If lang begins with ‘F’ or ‘f’, then FORTRAN
language conventions will be used (one-based indices, first dimension vary-
ing fastest). In either case, the data will be presented in the same order; only
the annotations will differ. This option may be useful for piping data into
other filters, since each data value appears on a separate line, fully identified.
(At most one of ‘-b’ or ‘-f’ options may be present.)

-l len Changes the default maximum line length (80) used in formatting lists of
non-character data values.

-p float_digits[,double_digits]

Specifies default precision (number of significant digits) to use in displaying
floating-point or double precision data values for attributes and variables. If
specified, this value overrides the value of the C_format attribute, if any, for
a variable. Floating-point data will be displayed with float_digits significant
digits. If double_digits is also specified, double-precision values will be dis-
played with that many significant digits. In the absence of any ‘-p’ specifica-
tions, floating-point and double-precision data are displayed with 7 and 15
significant digits respectively. CDL files can be made smaller if less preci-
sion is required. If both floating-point and double precisions are specified,
the two values must appear separated by a comma (no blanks) as a single
argument to the command.

-n name CDL requires a name for a netCDF dataset, for use by ‘ncgen -b’ in gener-
ating a default netCDF dataset name. By default, ncdump constructs this
name from the last component of the file name of the input netCDF dataset
by stripping off any extension it has. Use the ‘-n’ option to specify a differ-
ent name. Although the output file name used by ‘ncgen -b’ can be speci-
fied, it may be wise to have ncdump change the default name to avoid
inadvertently overwriting a valuable netCDF dataset when using ncdump,
editing the resulting CDL file, and using ‘ncgen -b’ to generate a new
netCDF dataset from the edited CDL file.

Chapter 10: NetCDF Utilities 97
ncdump -b c foo.nc > foo.cdl

Output data for only the variables uwind and vwind from the netCDF dataset foo.nc, and show
the floating-point data with only three significant digits of precision:

ncdump -v uwind,vwind -p 3 foo.nc

Produce a fully-annotated (one data value per line) listing of the data for the variable omega, using
FORTRAN conventions for indices, and changing the netCDF dataset name in the resulting CDL
file to omega:

ncdump -v omega -f fortran -n omega foo.nc > Z.cdl

98

Chapter 11: Answers to Some Frequently Asked Questions 99
11 Answers to Some Frequently Asked Ques-
tions
This chapter contains answers to some of the most frequently asked questions about netCDF. A
more comprehensive and up-to-date FAQ document for netCDF is maintained at http://
www.unidata.ucar.edu/packages/netcdf/faq.html.

What Is netCDF?

NetCDF (network Common Data Form) is an interface for array-oriented data access and a freely-
distributed collection of software libraries for C, FORTRAN, C++, and Perl that provide imple-
mentations of the interface. The netCDF software was developed by Glenn Davis, Russ Rew, and
Steve Emmerson at the Unidata Program Center in Boulder, Colorado, and augmented by contri-
butions from other netCDF users. The netCDF libraries define a machine-independent format for
representing arrays. Together, the interface, libraries, and format support the creation, access, and
sharing of array-oriented data.

NetCDF data is:

• Self-describing. A netCDF dataset includes information about the data it contains.
• portable. A netCDF dataset is represented in a form that can be accessed by computers with

different ways of storing integers, characters, and floating-point numbers.
• Direct-access. A small subset of a large dataset may be accessed efficiently, without first read-

ing through all the preceding data.
• Appendable. Data can be appended to a netCDF dataset along one dimension for multiple

variables without copying the dataset or redefining its structure. The structure of a netCDF
dataset may also be changed, though in some cases this is implemented by copying the data.

• Sharable. One writer and multiple readers may simultaneously access the same netCDF
dataset.

How do I get the netCDF software package?

Source distributions are available via anonymous FTP from the directory

ftp://ftp.unidata.ucar.edu/pub/netcdf/.

Files in that directory include:

Binary distributions for some platforms are available from the directory

netcdf.tar.Z A compressed tar file of source code for the latest general release.

netcdf-beta.tar.Z The current beta-test release.

100
ftp://ftp.unidata.ucar.edu/pub/binary/

Source for the Perl interface is available as a separate package, via anonymous FTP from the
directory

ftp://ftp.unidata.ucar.edu/pub/netcdf-perl/.

Is there any access to netCDF information on the World Wide Web?

Yes, the latest version of this FAQ document as well as a hypertext version of the NetCDF User’s
Guide and other information about netCDF are available from

http://www.unidata.ucar.edu/packages/netcdf.

What has changed since the previous release?

Version 3 keeps the same format, but introduces new interfaces for C and FORTRAN that provide
automatic type conversion and improved type safety. For more details, see:

http://www.unidata.ucar.edu/packages/netcdf/release-notes.html.

Is there a mailing list for netCDF discussions and questions?

Yes. For information about the mailing list and how to subscribe or unsubscribe, send a message
to majordomo@unidata.ucar.edu with no subject and with the following line in the body of the
message:

info netcdfgroup

Who else uses netCDF?

The netCDF mailing list has almost 500 addresses (some of which are aliases to more addresses)
in fifteen countries. Several groups have adopted netCDF as a standard way to represent some
forms of array-oriented data, including groups in the atmospheric sciences, hydrology, oceanogra-
phy, environmental modeling, geophysics, chromatography, mass spectrometry, and neuro-imag-
ing.

A description of some of the projects and groups that have used netCDF is available from

http://www.unidata.ucar.edu/packages/netcdf/usage.html.

What is the physical format for a netCDF files?

See Chapter 9 “NetCDF File Structure and Performance,” page 83, for an explanation of the

Chapter 11: Answers to Some Frequently Asked Questions 101
physical structure of netCDF data at a high enough level to make clear the performance implica-
tions of different data organizations. See Appendix B “File Format Specification,” page 107, for a
detailed specification of the file format.

Programs that access netCDF data should perform all access through the documented interfaces,
rather than relying on the physical format of netCDF data. That way, any future changes to the
format will not require changes to programs, since any such changes will be accompanied by
changes in the library to support both the old and new versions of the format.

What does netCDF run on?

The current version of netCDF has been tested successfully on the following platforms:

• AIX-4.1
• HPUX-9.05
• IRIX-5.3
• IRIX64-6.1
• MSDOS (using gcc, f2c, and GNU make)
• OSF1-3.2
• OpenVMS-6.2
• OS/2 2.1
• SUNOS-4.1.4
• SUNOS-5.5
• ULTRIX-4.5
• UNICOS-8
• Windows NT-3.51

What other software is available for netCDF data?

Utilities available in the current netCDF distribution from Unidata are ncdump, for converting
netCDF datasets to an ASCII human-readable form, and ncgen for converting from the ASCII
human-readable form back to a binary netCDF file or a C or FORTRAN program for generating
the netCDF dataset.

Several commercial and freely available analysis and data visualization packages have been
adapted to access netCDF data. More information about these packages and other software that
can be used to manipulate or display netCDF data is available from

http://www.unidata.ucar.edu/packages/netcdf/software.html.

What other formats are available for scientific data?

The Scientific Data Format Information FAQ, available from http://fits.cv.nrao.edu/traf-

fic/scidataformats/faq.html, provides a good description of other access interfaces and for-
mats for array-oriented data, including CDF and HDF.

102
How do I make a bug report?

If you find a bug, send a description to support@unidata.ucar.edu. This is also the address to
use for questions or discussions about netCDF that are not appropriate for the entire netcdfgroup
mailing list.

How do I search through past problem reports?

A search form is available at the bottom of the netCDF home page providing a full-text search of
the support questions and answers about netCDF provided by Unidata support staff.

How does the C++ interface differ from the C interface?

It provides all the functionality of the C interface (except for the mapped array access of
nc_put_varm_type and nc_get_varm_type). With the C++ interface (http://www.uni-
data.ucar.edu/packages/netcdf/cxxdoc_toc.html) no IDs are needed for netCDF compo-
nents, there is no need to specify types when creating attributes, and less indirection is required
for dealing with dimensions. However, the C++ interface is less mature and less-widely used than
the C interface, and the documentation for the C++ interface is less extensive, assuming a famil-
iarity with the netCDF data model and the C interface.

How does the FORTRAN interface differ from the C interface?

It provides all the functionality of the C interface. The FORTRAN interface uses FORTRAN con-
ventions for array indices, subscript order, and strings. There is no difference in the on-disk for-
mat for data written from the different language interfaces. Data written by a C language program
may be read from a FORTRAN program and vice-versa.

How does the Fortran 90 interface differ from the C interface?

The Fortran 90 interface provides the same functionality as the FORTRAN and C interfaces, but
the interface is substantially smaller. We’ve done this by using optional arguments in the file,
dimension, variable, and attribute inquire functions (nf90_Inquire_) and by using overloaded
functions for the reading and writing of variables and attributes.

The Fortran 90 interface is currently implemented as a set of wrappers around the FORTRAN
interface. Because there is almost no copying of information, the performance penalty should be
very small.

The Fortran 90 interface is new as of February 2000, and we would appreciate any user feedback.

How does the Perl interface differ from the C interface?

It provides all the functionality of the C interface. The Perl interface (http://www.uni-

Chapter 11: Answers to Some Frequently Asked Questions 103
data.ucar.edu/packages/netcdf-perl/) uses Perl conventions for arrays and strings. There is
no difference in the on-disk format for data written from the different language interfaces. Data
written by a C language program may be read from a Perl program and vice-versa.

104

Chapter 11: Units 105
Appendix A Units
The Unidata Program Center has developed a units library to convert between formatted and
binary forms of units specifications and perform unit algebra on the binary form. Though the units
library is self-contained and there is no dependency between it and the netCDF library, it is never-
theless useful in writing generic netCDF programs and we suggest you obtain it. The library and
associated documentation is available from http://www.unidata.ucar.edu/packages/udun-

its/.

The following are examples of units strings that can be interpreted by the utScan() function of
the Unidata units library:

10 kilogram.meters/seconds2
10 kg-m/sec2
10 kg m/s^2
10 kilogram meter second-2
(PI radian)2
degF
100rpm
geopotential meters
33 feet water
milliseconds since 1992-12-31 12:34:0.1 -7:00

A unit is specified as an arbitrary product of constants and unit-names raised to arbitrary integral
powers. Division is indicated by a slash ‘/’. Multiplication is indicated by white space, a period
‘.’, or a hyphen ‘-’. Exponentiation is indicated by an integer suffix or by the exponentiation
operators ‘^’ and ‘**’. Parentheses may be used for grouping and disambiguation. The time stamp
in the last example is handled as a special case.

Arbitrary Galilean transformations (i.e., y = ax + b) are allowed. In particular, temperature con-
versions are correctly handled. The specification:

degF @ 32

indicates a Fahrenheit scale with the origin shifted to thirty-two degrees Fahrenheit (i.e., to zero
Celsius). Thus, the Celsius scale is equivalent to the following unit:

1.8 degF @ 32

Note that the origin-shift operation takes precedence over multiplication. In order of increasing
precedence, the operations are division, multiplication, origin-shift, and exponentiation.

utScan() understands all the SI prefixes (e.g. “mega” and “milli”) plus their abbreviations (e.g.
“M” and “m”)

The function utPrint() always encodes a unit specification one way. To reduce misunderstand-
ings, it is recommended that this encoding style be used as the default. In general, a unit is
encoded in terms of basic units, factors, and exponents. Basic units are separated by spaces, and

106
any exponent directly appends its associated unit. The above examples would be encoded as fol-
lows:

10 kilogram meter second-2
9.8696044 radian2
0.555556 kelvin @ 255.372
10.471976 radian second-1
9.80665 meter2 second-2
98636.5 kilogram meter-1 second-2
0.001 seconds since 1992-12-31 19:34:0.1000 UTC

(Note that the Fahrenheit unit is encoded as a deviation, in fractional kelvins, from an origin at
255.372 kelvin, and that the time in the last example has been referenced to UTC.)

The database for the units library is a formatted file containing unit definitions and is used to ini-
tialize this package. It is the first place to look to discover the set of valid names and symbols.

The format for the units-file is documented internally and the file may be modified by the user as
necessary. In particular, additional units and constants may be easily added (including variant
spellings of existing units or constants).

utScan() is case-sensitive. If this causes difficulties, you might try making appropriate additional
entries to the units-file.

Some unit abbreviations in the default units-file might seem counterintuitive. In particular, note
the following:

For additional information on this units library, please consult the manual pages that come with
the distribution.

For Use Not Which Instead Means

Celsius Celsius C coulomb

gram gram g <standard free fall>

gallon gallon gal <acceleration>

radian radian rad <absorbed dose>

Newton newton or N nt nit (unit of photometry)

Chapter 11: File Format Specification 107
Appendix B File Format Specification
This appendix specifies the netCDF file format.

The format is first presented formally, using a BNF grammar notation. In the grammar, optional
components are enclosed between braces (‘[‘ and ‘]’). Comments follow ‘//’ characters. Nonter-
minals are in lower case, and terminals are in upper case. A sequence of zero or more occurrences
of an entity are denoted by ‘[entity …]’.

The Format in Detail

netcdf_file := header data

header := magic numrecs dim_array gatt_array var_array

magic := 'C' 'D' 'F' VERSION_BYTE

VERSION_BYTE := '\001' // the file format version number

numrecs := NON_NEG

dim_array := ABSENT | NC_DIMENSION nelems [dim …]

gatt_array := att_array // global attributes

att_array := ABSENT | NC_ATTRIBUTE nelems [attr …]

var_array := ABSENT | NC_VARIABLE nelems [var …]

ABSENT := ZERO ZERO // Means array not present (equivalent to
 // nelems == 0).

nelems := NON_NEG // number of elements in following sequence

dim := name dim_length

name := string

dim_length := NON_NEG // If zero, this is the record dimension.
 // There can be at most one record dimension.

attr := name nc_type nelems [values]

nc_type := NC_BYTE | NC_CHAR | NC_SHORT | NC_INT | NC_FLOAT | NC_DOUBLE

var := name nelems [dimid …] vatt_array nc_type vsize begin
 // nelems is the rank (dimensionality) of the
 // variable; 0 for scalar, 1 for vector, 2 for
 // matrix, …

108
vatt_array := att_array // variable-specific attributes

dimid := NON_NEG // Dimension ID (index into dim_array) for
 // variable shape. We say this is a “record
 // variable” if and only if the first
 // dimension is the record dimension.

vsize := NON_NEG // Variable size. If not a record variable,
 // the amount of space, in bytes, allocated to
 // that variable’s data. This number is the
 // product of the dimension lengths times the
 // size of the type, padded to a four byte
 // boundary. If a record variable, it is the
 // amount of space per record. The netCDF
 // “record size” is calculated as the sum of
 // the vsize’s of the record variables.

begin := NON_NEG // Variable start location. The offset in
 // bytes (seek index) in the file of the
 // beginning of data for this variable.

data := non_recs recs

non_recs := [values …] // Data for first non-record var, second
 // non-record var, …

recs := [rec …] // First record, second record, …

rec := [values …] // Data for first record variable for record
 // n, second record variable for record n, …
 // See the note below for a special case.

values := [bytes] | [chars] | [shorts] | [ints] | [floats] | [doubles]

string := nelems [chars]

bytes := [BYTE …] padding

chars := [CHAR …] padding

shorts := [SHORT …] padding

ints := [INT …]

floats := [FLOAT …]

doubles := [DOUBLE …]

padding := <0, 1, 2, or 3 bytes to next 4-byte boundary>
 // In header, padding is with 0 bytes. In
 // data, padding is with variable’s fill-value.

NON_NEG := <INT with non-negative value>

Chapter 11: File Format Specification 109
ZERO := <INT with zero value>

BYTE := <8-bit byte>

CHAR := <8-bit ACSII/ISO encoded character>

SHORT := <16-bit signed integer, Bigendian, two’s complement>

INT := <32-bit signed integer, Bigendian, two’s complement>

FLOAT := <32-bit IEEE single-precision float, Bigendian>

DOUBLE := <64-bit IEEE double-precision float, Bigendian>

// tags are 32-bit INTs
NC_BYTE := 1 // data is array of 8 bit signed integer
NC_CHAR := 2 // data is array of characters, i.e., text
NC_SHORT := 3 // data is array of 16 bit signed integer
NC_INT := 4 // data is array of 32 bit signed integer
NC_FLOAT := 5 // data is array of IEEE single precision float
NC_DOUBLE := 6 // data is array of IEEE double precision float
NC_DIMENSION := 10
NC_VARIABLE := 11
NC_ATTRIBUTE := 12

Computing File Offsets

To calculate the offset (position within the file) of a specified data value, let external_sizeof be the
external size in bytes of one data value of the appropriate type for the specified variable, nc_type:

NC_BYTE 1
NC_CHAR 1
NC_SHORT 2
NC_INT 4
NC_FLOAT 4
NC_DOUBLE 8

On a call to NF90_OPEN (or NF90_ENDDEF), scan through the array of variables, denoted var_array
above, and sum the vsize fields of “record” variables to compute recsize.

Form the products of the dimension lengths for the variable from right to left, skipping the left-
most (record) dimension for record variables, and storing the results in a product array for each
variable. For example:

Non-record variable:

 dimension lengths: [5 3 2 7]
 product: [210 42 14 7]

Record variable:

110
 dimension lengths: [0 2 9 4]
 product: [0 72 36 4]

At this point, the leftmost product, when rounded up to the next multiple of 4, is the variable size,
vsize, in the grammar above. For example, in the non-record variable above, the value of the vsize
field is 212 (210 rounded up to a multiple of 4). For the record variable, the value of vsize is just
72, since this is already a multiple of 4.

Let coord be an array of the coordinates of the desired data value, and offset be the desired result.
Then offset is just the file offset of the first data value of the desired variable (its begin field) added
to the inner product of the coord and product vectors times the size, in bytes, of each datum for
the variable. Finally, if the variable is a record variable, the product of the record number,
‘coord[0]’, and the record size, recsize is added to yield the final offset value.

In pseudo-C code, here’s the calculation of offset:

for (innerProduct = i = 0; i < var.rank; i++)
 innerProduct += product[i] * coord[i]
offset = var.begin;
offset += external_sizeof * innerProduct
if(IS_RECVAR(var))
 offset += coord[0] * recsize;

So, to get the data value (in external representation):

lseek(fd, offset, SEEK_SET);
read(fd, buf, external_sizeof);

A special case: Where there is exactly one record variable, we drop the restriction that each
record be four-byte aligned, so in this case there is no record padding.

Examples

By using the grammar above, we can derive the smallest valid netCDF file, having no dimensions,
no variables, no attributes, and hence, no data. A CDL representation of the empty netCDF file is

netcdf empty { }

This empty netCDF file has 32 bytes, as you may verify by using ‘ncgen -b empty.cdl’ to gen-
erate it from the CDL representation. It begins with the four-byte “magic number” that identifies it
as a netCDF version 1 file: ‘C’, ‘D’, ‘F’, ‘\001’. Following are seven 32-bit integer zeros repre-
senting the number of records, an empty array of dimensions, an empty array of global attributes,
and an empty array of variables.

Below is an (edited) dump of the file produced on a big-endian machine using the Unix command

od -xcs empty.nc

Each 16-byte portion of the file is displayed with 4 lines. The first line displays the bytes in hexa-

Chapter 11: File Format Specification 111
decimal. The second line displays the bytes as characters. The third line displays each group of
two bytes interpreted as a signed 16-bit integer. The fourth line (added by human) presents the
interpretation of the bytes in terms of netCDF components and values.

 4344 4601 0000 0000 0000 0000 0000 0000
 C D F 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
 17220 17921 00000 00000 00000 00000 00000 00000
[magic number] [0 records] [0 dimensions (ABSENT)]

 0000 0000 0000 0000 0000 0000 0000 0000
 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
 00000 00000 00000 00000 00000 00000 00000 00000
[0 global atts (ABSENT)] [0 variables (ABSENT)]

As a slightly less trivial example, consider the CDL

netcdf tiny {
dimensions:
 dim = 5;
variables:
 short vx(dim);
data:
 vx = 3, 1, 4, 1, 5 ;
}

which corresponds to a 92-byte netCDF file. The following is an edited dump of this file:

 4344 4601 0000 0000 0000 000a 0000 0001
 C D F 001 \0 \0 \0 \0 \0 \0 \0 \n \0 \0 \0 001
 17220 17921 00000 00000 00000 00010 00000 00001
[magic number] [0 records] [NC_DIMENSION] [1 dimension]

 0000 0003 6469 6d00 0000 0005 0000 0000
 \0 \0 \0 003 d i m \0 \0 \0 \0 005 \0 \0 \0 \0
 00000 00003 25705 27904 00000 00005 00000 00000
[3 char name = "dim"] [size = 5] [0 global atts

 0000 0000 0000 000b 0000 0001 0000 0002
 \0 \0 \0 \0 \0 \0 \0 013 \0 \0 \0 001 \0 \0 \0 002
 00000 00000 00000 00011 00000 00001 00000 00002
 (ABSENT)] [NC_VARIABLE] [1 variable] [2 char name =

 7678 0000 0000 0001 0000 0000 0000 0000
 v x \0 \0 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 \0
 30328 00000 00000 00001 00000 00000 00000 00000
 "vx"] [1 dimension] [with ID 0] [0 attributes

 0000 0000 0000 0003 0000 000c 0000 0050
 \0 \0 \0 \0 \0 \0 \0 003 \0 \0 \0 \f \0 \0 \0 P
 00000 00000 00000 00003 00000 00012 00000 00080
 (ABSENT)] [type NC_SHORT] [size 12 bytes] [offset: 80]

 0003 0001 0004 0001 0005 8001

112
 \0 003 \0 001 \0 004 \0 001 \0 005 200 001
 00003 00001 00004 00001 00005 -32767
[3] [1] [4] [1] [5] [fill]

Chapter 11: Summary of Fortran 90 Interface 113
Appendix C Summary of Fortran 90
Interface

Dataset Functions

function nf90_inq_libvers()
 character(len = 80) :: nf90_inq_libvers

function nf90_strerror(ncerr)
 integer, intent(in) :: ncerr
 character(len = 80) :: nf90_strerror

function nf90_create(path, cmode, ncid)
 character (len = *), intent(in) :: path
 integer, intent(in) :: cmode
 integer, optional, intent(in) :: initialsize
 integer, optional, intent(inout) :: chunksize
 integer, intent(out) :: ncid
 integer :: nf90_create

function nf90_open(path, mode, ncid, chunksize)
 character (len = *), intent(in) :: path
 integer, intent(in) :: mode
 integer, intent(out) :: ncid
 integer, optional, intent(inout) :: chunksize
 integer :: nf90_open

function nf90_set_fill(ncid, fillmode, old_mode)
 integer, intent(in) :: ncid, fillmode
 integer, intent(out) :: old_mode
 integer :: nf90_set_fill

function nf90_redef(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_redef

function nf90_enddef(ncid, h_minfree, v_align, v_minfree, r_align)
 integer, intent(in) :: ncid
 integer, optional, intent(in) :: h_minfree, v_align, v_minfree, r_align
 integer :: nf90_enddef

function nf90_sync(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_sync

function nf90_abort(ncid)
 integer, intent(in) :: ncid
 integer :: nf90_abort

function nf90_close(ncid)
 integer, intent(in) :: ncid

114
 integer :: nf90_close

function nf90_Inquire(ncid, nDimensions, nVariables, nAttributes, &
 unlimitedDimId)
 integer, intent(in) :: ncid
 integer, optional, intent(out) :: nDimensions, nVariables, nAttributes,&
 unlimitedDimId
 integer :: nf90_Inquire

Dimension functions

function nf90_def_dim(ncid, name, len, dimid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(in) :: len
 integer, intent(out) :: dimid
 integer :: nf90_def_dim

function nf90_inq_dimid(ncid, name, dimid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(out) :: dimid
 integer :: nf90_inq_dimid

function nf90_Inquire_Dimension(ncid, dimid, name, len)
 integer, intent(in) :: ncid, dimid
 character (len = *), optional, intent(out) :: name
 integer, optional, intent(out) :: len
 integer :: nf90_Inquire_Dimension

function nf90_rename_dim(ncid, dimid, name)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(in) :: dimid
 integer :: nf90_rename_dim

Variable functions

function nf90_def_var(ncid, name, xtype, dimids, varid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(in) :: xtype
 integer, dimension(:), intent(in) :: dimids ! May be omitted, scalar,
 ! vector
 integer :: nf90_def_var

function nf90_inq_varid(ncid, name, varid)
 integer, intent(in) :: ncid
 character (len = *), intent(in) :: name
 integer, intent(out) :: varid
 integer :: nf90_inq_varid

function nf90_Inquire_Variable(ncid, varid, name, xtype, ndims, &
 dimids, nAtts)

Chapter 11: Summary of Fortran 90 Interface 115
 integer, intent(in) :: ncid, varid
 character (len = *), optional, intent(out) :: name
 integer, optional, intent(out) :: xtype, ndims
 integer, dimension(*), optional, intent(out) :: dimids
 integer, optional, intent(out) :: nAtts
 integer :: nf90_Inquire_Variable

function nf90_put_var(ncid, varid, values, start, stride, map)
 integer, intent(in) :: ncid, varid
any valid type, scalar or array of any rank, &

 intent(in) :: values
 integer, dimension(:), optional, intent(in) :: start, count, stride, map
 integer :: nf90_put_var

function nf90_get_var(ncid, varid, values, start, stride, map)
 integer, intent(in) :: ncid, varid
any valid type, scalar or array of any rank, &

 intent(out) :: values
 integer, dimension(:), optional, intent(in) :: start, count, stride, map
 integer :: nf90_get_var

function nf90_rename_var(ncid, varid, newname)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: newname
 integer :: nf90_rename_var

Attribute functions

function nf90_Inquire_Attribute(ncid, varid, name, xtype, len, attnum)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: name
 integer, intent(out), optional :: xtype, len, attnum
 integer :: nf90_Inquire_Attribute

function nf90_inq_attname(ncid, varid, attnum, name)
 integer, intent(in) :: ncid, varid, attnum
 character (len = *), intent(out) :: name
 integer :: nf90_inq_attname

function nf90_put_att(ncid, varid, name, values)
 integer, intent(in) :: ncid, varid
 character(len = *), intent(in) :: name
 any valid type, scalar or array of rank 1, &
 intent(in) :: values
 integer :: nf90_put_att

function nf90_get_att(ncid, varid, name, values)

 integer, intent(in) :: ncid, varid
 character(len = *), intent(in) :: name
 any valid type, scalar or array of rank 1, &
 intent(out) :: values

 integer :: nf90_get_att

116
function nf90_copy_att(ncid_in, varid_in, name, ncid_out, varid_out)
 integer, intent(in) :: ncid_in, varid_in
 character (len = *), intent(in) :: name
 integer, intent(in) :: ncid_out, varid_out
 integer :: nf90_copy_att

function nf90_rename_att(ncid, varid, curname, newname)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: curname, newname
 integer :: nf90_rename_att

function nf90_del_att(ncid, varid, name)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: name
 integer :: nf90_del_att

Chapter 11: FORTRAN 77 to Fortran 90 Transition Guide 117
Appendix D FORTRAN 77 to Fortran 90
Transition Guide

The new Fortran 90 interface

The Fortran 90 interface to the netCDF library closely follows the FORTRAN 77 interface. In most
cases, function and constant names and argument lists are the same, except that nf90_ replaces
nf_ in names. The Fortran 90 interface is much smaller than the FORTRAN 77 interface, however.
This has been accomplished by using optional arguments and overloaded functions wherever pos-
sible.

Because FORTRAN 77 is a subset of Fortran 90, there is no reason to modify working FORTRAN

code to use the Fortran 90 interface. New code, however, can easily be patterned after existing
FORTRAN while taking advantage of the simpler interface. Some compilers may provide additional
support when using Fortran 90. For example, compilers may issue warnings if arguments with
intent(in) are not set before they are passed to a procedure.

The Fortran 90 interface is currently implemented as a set of wrappers around the base FORTRAN

subroutines in the netCDF distribution. Future versions may be implemented entirely in Fortran
90, adding additional error checking possibilities.

Changes to Inquiry functions

In the Fortran 90 interface there are two inquiry functions each for dimensions, variables, and
attributes, and a single inquiry function for datasets. These functions take optional arguments,
allowing users to request only the information they need. These functions replace the many-argu-
ment and single-argument inquiry functions in the FORTRAN interface.

As an example, compare the attribute inquiry functions in the Fortran 90 interface

function nf90_Inquire_Attribute(ncid, varid, name, xtype, len, attnum)
 integer, intent(in) :: ncid, varid
 character (len = *), intent(in) :: name
 integer, intent(out), optional :: xtype, len, attnum
 integer :: nf90_Inquire_Attribute

function nf90_inq_attname(ncid, varid, attnum, name)
 integer, intent(in) :: ncid, varid, attnum
 character (len = *), intent(out) :: name
 integer :: nf90_inq_attname

with those in the FORTRAN interface

INTEGER FUNCTION NF_INQ_ATT (NCID, VARID, NAME, xtype, len)
INTEGER FUNCTION NF_INQ_ATTID (NCID, VARID, NAME, attnum)
INTEGER FUNCTION NF_INQ_ATTTYPE (NCID, VARID, NAME, xtype)

118
INTEGER FUNCTION NF_INQ_ATTLEN (NCID, VARID, NAME, len)
INTEGER FUNCTION NF_INQ_ATTNAME (NCID, VARID, ATTNUM, name)

Changes to put and get function

The biggest simplification in the Fortran 90 is in the nf90_put_var and nf90_get_var functions.
Both functions are overloaded: the values argument can be a scalar or an array any rank (7 is the
maximum rank allowed by Fortran 90), and may be of any numeric type or the default character
type. The netCDF library provides transparent conversion between the external representation of
the data and the desired internal representation.

The start, count, stride, and map arguments to nf90_put_var and nf90_get_var are
optional. By default, data is read from or written to consecutive values of starting at the origin of
the netCDF variable; the shape of the argument determines how many values are read from or
written to each dimension. Any or all of these arguments may be supplied to override the default
behavior.

Note also that Fortran 90 allows arbitrary array sections to be passed to any procedure, which may
greatly simplify programming. See Section 7.5 “Writing Data Values: NF90_PUT_VAR,”
page 56, and Section 7.6 “Reading Data Values: NF90_GET_VAR,” page 61, for examples.

Index for Fortran 90
Symbols

_FillValue 67
_FillValue attribute 71
90_MAX_VAR_DIMS 55
90_SHARE 33
abnormal termination 24
aborting

define mode 27
definitions 40

access
example of array section 17
other software for scientific data 101
random 16
shared dataset 85, 99

access to netCDF distribution
FTP 99
WWW 99

add_offset attribute 71
adding

attributes 27, 34
dimensions 27, 34
variables 27, 34

ancillary data 13, 14
APIs

descriptions 29
differences between C and C++ 102
differences between C and FORTRAN 102
summary of Fortran90 113

appending data
along unlimited dimension 10
to

dataset 99
variable 51

applications, generic 13, 14, 24, 45, 69, 72, 74
archive format 3
array section

access example 17
corner of 17
definition of 17
edges of 17
mapped 17
subsampled 17

arrays
nested 7
ragged 6

ASCII characters 15
attribute 13, 25, 69

_FillValue 71
add_offset 71
adding 27, 34
CDL 90

defining 13
global 90
initializing 92

changing specifications of 69
character-string 66
Conventions 72
conventions 13, 14, 69
copying 77
creating 72
data type 13, 69, 75
data type, CDL 92
deleting 27, 74, 80
ensuring changes to 24
example, global 14
FORTRAN_format 72
getting values 76
global 13, 69
history 72
ID 74
length 13, 66, 69, 75

CDL 92
long_name 70
missing_value 71
name syntax 9
operations 69
renaming 27, 79
scale_factor 70
signedness 71
title 72
units 14, 70, 105
valid_max 70
valid_min 70
valid_range 70
values 69, 76
variable ID 75
vs. variable 14

attributes associated with a variable 11
audit 72
backing out of definitions 40
bit lengths of data types 51
buffers, I/O 86

120
bug reports
making 102
searching past 102

byte
vs. character 67

byte

CDL
constant 92
data type 11, 91

data type 15
C code via ncgen, generating 93
C interface vii

differences from C++ 102
differences from FORTRAN 102

C++ interface vii
differences from C 102

call sequence, typical 23
canceling definitions 40
CANDIS 4
CDF

NASA 3
NSSDC 3
SeaSpace 4
Unidata Workshop 4

CDL 9, 93
attribute 90

data type 92
defining 13
initializing 92
length 92

byte constant 92
byte data type 11, 91
char data type 11
character constant 92
constant notation 92
data types 11

table of 91
dimension 90
double

constant 93
data type 11, 93

example 9, 89
file, data section of 90
fill values 91
float

constant 93
data type 11, 93

global attribute 90
int

constant 93
data type 11

long data type 11
names 90
notation 10
real data type 11

reserved words 16
short

constant 92
data type 11

syntax 89
variable

initializing 90
variables 90

declaration 11
changes

since last release 5, 100
to attributes, ensuring 24

changing dimension length 6
char data type 15, 91

CDL 11
character string 66

attribute 66
CDL constant 92
fixed-length 66
reading 66
writing 66

character-position dimension 66
characters

ASCII 15
vs. byte 67

closing a dataset 24, 37, 40
code

compiling netCDF-using 28
generating via ncgen 93

commercial netCDF software 101
common netCDF call sequence 23
compiling and linking 28
compiling netCDF-using code 28
compression, data 6, 71
computers, CRAY 86
computing file offsets of data 109
concurrent dataset access 39, 85, 99

limitations of 6
conditions, error 29
constant, CDL 92

byte 92
character 92
double 93
float 93
int 93
short 92

conventions
attribute 13, 14, 69
discipline-specific 72
example 29
name 9
netCDF 3
units syntax 105

Conventions attribute 72

121
converting
floating-point values, cost of 84
units 105

coordinate
offset vector 19
systems, defining 12
variable 12, 90

coordinate variables 12
copying attributes 77
corner of array section 17
correspondence

between data types and data 51
cost of converting floating-point values 84
count vector 17
CRAY computers 86

Flexible File I/O 86
Flexible File I/O library 87
I/O, optimizing 86

creating
attribute 72
dataset 23, 31, 40
dimension 45
netCDF file 93
variable 52

data
access, other software for 101
ancillary 13, 14
compression 6, 71
correspondence between data types and 51
file offsets of 109
history, recording 72
loss 24
mode 27, 35, 39, 40, 69
model limitations 6
order 18
packing 6, 71
portability vii, 99
range, valid 70
reading 66

character-string 66
representation, external 2
resolution 71
scaling 70
section of CDL file 90
section, netCDF file fixed-size 83
self-describing vii
storage 9
structures 20
structures, nested 6
values, variable 11
writing 66

character-string 66
data mode 23, 27
data type 11

and data, correspondence between 51
attribute 13, 69, 75
bit length of 51
byte 15
CDL 11
CDL attribute 92
CDL byte 11, 91
CDL char 11
CDL double 11, 93
CDL float 11, 93
CDL int 11
CDL long (deprecated) 11
CDL real 11
CDL short 11
CDL, table of 91
char 15, 91
double 15, 92
external 15
float 15, 91
getting variable 54
int 15, 91
netCDF 15, 66
NF90_BYTE 11
NF90_CHAR 11
NF90_DOUBLE 11
NF90_FLOAT 11
NF90_INT 11
NF90_INT1 11
NF90_INT2 11
NF90_INT4 11
NF90_REAL 11
NF90_REAL8 11
NF90_SHORT 11
short 15, 91
signed byte 16
sizes 51
unsigned byte 16
variable 11, 51

database
management systems 1
systems, relational 1

dataset
appending data to 99
closing 24, 37, 40
creating 23, 40
deleting 40
generating via ncgen 93
ID 16
inquiring about 38
opening netCDF 24, 33
operations 40
reading netCDF 24
shared, access 39, 85, 99
synchronizing 39

122
declaration, CDL variable 11
default

error handling 28
fill values 67

define mode 23, 27, 40, 45, 53, 69
aborting 27
entering 34
leaving 35

defining
attribute 72
CDL attributes 13
coordinate systems 12
dimension 45
variable 52

definition
aborting 40
backing out of 40
of array section 17
restoring old 27

deleting
attribute 27, 74, 80
dataset 40

deprecated feature
CDL long data type 11

development, netCDF 3
dimension 10, 13, 24, 25, 45

adding 27, 34
CDL 90
character-position 66
creating 45
ID 24, 25, 45, 46, 47, 53

getting 46
unlimited 38

information, getting 47
inquiring about 47
length 10, 45, 47

changing 6
getting 47

multiple unlimited 7
name 10, 45, 46, 47, 48, 49

getting 47
syntax 9

number of
maximum 45, 53

variable 53, 55
record 10, 11, 45, 47, 51
renaming 27, 34, 49
unlimited 10, 11, 45, 47, 51

direct access 16, 99
discipline-specific conventions 72
distribution

FTP access to netCDF 99
netCDF source 99
WWW access to netCDF 99

documentation, HTML version of vii
double

CDL
constant 93
data type 11, 93

data type 15, 92
edge

of array section 17
efficiency 2, 24, 39, 83
empty netCDF file 110
ensuring changes to attributes 24
entering define mode 34
environment variable, NETCDF_FFIOSPEC 86
error

conditions 29
handling 28

default 28
messages 28

getting 30
suppressing 28

returns 28
write 28

example
array section access 17
CDL 9, 89
conventions 29
file format 110
global attribute 14

extension, netCDF file 93
external data

representation 2
types 15

FAQ 99
FFIO library, CRAY 87
file

data section, CDL 90
empty 110
extension, netCDF 93
fixed-size data section 83
format 83, 100

example 110
specification 107
version 107

generating 93
grammar 107
header section 83
name 29
offsets of data 109
sections 83
size 6, 66, 83

limitation 6
smallest 110

structure 83, 100
File Array Notation 5
File I/O library, CRAY Flexible 87

123
file size limits 84
fill mode, setting write 41
fill values 67, 71, 91

CDL 91
default 67

_FillValue attribute 71
fixed-length character-strings 66
fixed-size data section, netCDF file 83
Flexible File I/O library, CRAY 87
float

CDL
constant 93
data type 11, 93

data type 15, 91
floating-point

IEEE 2, 15
values, converting 84

flushing 86
format 83, 100

archive 3
example, file 110
physical 100
specification 107
version 107

FORTRAN
and C interfaces, differences between 102
code via ncgen, generating 93
interface vii

FORTRAN_format attribute 72
Fortran90 interface

summary of 113
freely available netCDF software 101
frequently asked questions 99
FTP access to netCDF distribution 99
generating

C code via ncgen 93
dataset 93
file 93
FORTRAN code via ncgen 93

generating code via ncgen
C 93
FORTRAN 93

generic applications 13, 14, 24, 45, 69, 72, 74
getting

attribute
values 76

character-string data 66
data 66
dataset information 38
dimension

ID 46
information 47
length 47
name 47

error messages 30
library version 30
netCDF software 99
variable

data type 54
ID 54
information 54
name 54
shape 54

global
attribute 13, 69

CDL 90
example 14

global attributes
number of 55

grammar, netCDF file 107
grouping variables 21
handle 29
HANDLE_ERR 30
handling

error 28
default 28

HDF vi
header section, netCDF file 83
history

data, recording 72
of interface 3

history attribute 72
home page vii
HTML documentation vii
I/O

buffers 86
CRAY, optimizing 86
library, CRAY FFIO 87

ID
attribute 74

variable 75
dataset 16
dimension 24, 25, 45, 46, 47, 53

getting 46
unlimited 38

netCDF 16, 29, 37
variable 16, 25, 51

ID, getting
variable 54

IEEE floating-point 2, 15
implementation 45
index

order 18
variables 20

index mapping vector 17, 18, 19, 51
index vector 17
indexing values 20
information, getting

on dataset 38

124
on dimension 47
on variable 54

initializing
CDL attributes 92
CDL variables 90

inner product 19
inquire functions 25
inquiring about

dataset 38
dimension 47
variable 54

int

CDL
constant 93
data type 11

data type 15, 91
interface 29

C vii
differences from C++ 102
differences from FORTRAN 102

C++ vii
descriptions 29
FORTRAN vii
Fortran90

summary of 113
history 3
Perl vii, 100, 102

interval, sampling 17
known names 24
languages

compatibility of interfaces 18
supported 1

Large File Support 84
largest file size 6
leaving define mode 35
length

attribute 13, 66, 69, 75
CDL attribute 92
data type bit 51
dimension 10, 45, 47

changing 6
getting 47

maximum name 55
variable 12

level of support vi
LFS 84
library

CRAY FFIO 87
linking with netCDF 28
UDUNITS 105
use 23
version, getting 30

limitation
concurrent access 6

data model 6
file size 6
netCDF 5
unlimited dimension 6

linked lists 20
linking and compiling 28
linking with netCDF library 28
list

linked 20
mailing 100

long CDL data type (deprecated) 11
long_name attribute 70
loss, data 24
mailing list 100
mapped array section 17
mapping vector, index 17, 18, 19, 51
matrices, sparse 20
maximum

attributes per variable 73
dimensions 45, 53
name length 55
records 47
variable dimensions 53, 55
variables 53

messages
error 28

getting 30
suppressing 28

metadata 13, 14
missing values 67, 70, 71
missing_value attribute 71
mode

data 27, 35, 39, 40, 69
define 27, 40, 45, 53, 69

aborting 27
entering 34
leaving 35

write fill, setting 41
model limitations, data 6
multiple unlimited dimensions 7
multiple writers 6
name

attribute 69
CDL 90
conventions 9
dimension 10, 45, 46, 47, 48, 49

getting 47
known 24
length, maximum 55
netCDF file 29
syntax

attribute 9
dimension 9
variable 9

125
variable, getting 54
NASA CDF 3
ncdump 94
ncgen 93

generating C code via 93
generating FORTRAN code via 93

NCSA vi
NE90_CLOSE example 37
nested arrays 7
nested data structures 6
netCDF 1, 10

call sequence, typical 23
conventions 3
data types 15, 66
dataset

opening a 24, 33
reading a 24

dataset, generating a 93
development 3
distribution

FTP access to 99
WWW access to 99

file
empty 110
extension 93
fixed-size data section 83
format 83, 100

specification 107

version 107
generating a 93
grammar 107
header 83
largest 6
name 29
sections 83
size 66, 83
smallest 110
structure of a 100

handle 29
home page, WWW vii
ID 16, 29, 37
implementation 45
interface history 3
library use 23
library, linking with 28
limitations 5
operations 29
purpose vii
software

commercial 101
freely available 101
getting 99

usage 100
WWW site vii

netcdf.MOD 28

NETCDF_FFIOSPEC 86
NETCDF_FFIOSPEC environment variable 86
netCDF-using code, compiling 28
NF90_ABORT 27, 40
NF90_ABORT example 41
NF90_ALIGN_CHUNK 36
NF90_BYTE 52
NF90_BYTE data type 11
NF90_CHAR 52
NF90_CHAR data type 11
NF90_CLOBBER 32
NF90_CLOSE 23, 24, 25, 26, 27, 37
NF90_COPY_ATT 77
NF90_COPY_ATT example 78
NF90_CREATE 23, 31
NF90_DEF_DIM 23, 27, 45
NF90_DEF_DIM example 46
NF90_DEF_VAR 23, 27, 52
NF90_DEF_VAR example 53
NF90_DEL_ATT 80
NF90_DEL_ATT example 81
NF90_DOUBLE 52
NF90_DOUBLE data type 11
NF90_EEXIST 32
NF90_ENDDEF 27, 84
NF90_ENDDEF example 36
NF90_ENDDEF. 23
NF90_ENDEF 23
NF90_FILL 42
NF90_FILL_BYTE 67
NF90_FILL_CHAR 67
NF90_FILL_DOUBLE 67
NF90_FILL_FLOAT 67
NF90_FILL_INT 67
NF90_FILL_INT1 67
NF90_FILL_INT2 67
NF90_FILL_REAL 67
NF90_FILL_SHORT 67
NF90_FLOAT 52
NF90_FLOAT data type 11
NF90_GET_ATT 24, 25, 26, 76
NF90_GET_ATT example 77
NF90_GET_VAR 24, 25, 26, 61
NF90_GET_VAR example 63
NF90_GLOBAL 69, 75
NF90_INQ_ATTNAME 25, 69, 74, 75
NF90_inq_attname 74
NF90_INQ_DIM example 48
NF90_INQ_DIMID 24, 46
NF90_INQ_DIMID example 47
NF90_INQ_LIBVERS 30
NF90_INQ_VARID 24, 26, 54
NF90_Inquire 25, 38
NF90_Inquire_Att 74, 76

126
NF90_Inquire_Att example 75
NF90_Inquire_Attribute 25, 74, 75
NF90_Inquire_Dimension 25, 47
NF90_Inquire_Variable 25, 54, 75
NF90_Inquire_Variable example 55
NF90_INT 52
NF90_INT data type 11
NF90_INT1 data type 11
NF90_INT2 data type 11
NF90_INT4 data type 11
NF90_MAX_ATTRS 73
NF90_MAX_DIMS 45
NF90_MAX_NAME 48, 55
NF90_MAX_VARS 53
NF90_NOCLOBBER 32
NF90_NOERR 38
NF90_NOFILL 41, 42
NF90_NOWRITE 33
NF90_OPEN 24, 25, 26, 27, 33
NF90_OPEN example 34
NF90_PUT_ATT 23, 26, 27, 72

 example 73
NF90_PUT_VAR 23, 24, 26, 27, 56
NF90_PUT_VAR example 58
NF90_REAL data type 11
NF90_REAL8 data type 11
NF90_REDEF 27, 34, 84
NF90_REDEF example 35
NF90_RENAME_ATT 79
NF90_RENAME_ATT example 80
NF90_RENAME_DIM 49
NF90_RENAME_VAR 67
NF90_RENAME_VAR example 68
NF90_SET_FILL 41, 71
NF90_SET_FILL example 43
NF90_SHARE 24, 27, 32, 39, 86
NF90_SHORT 52
NF90_SHORT data type 11
NF90_SIZEHINT_DEFAULT 32, 34
NF90_STRERROR 28, 30
NF90_SYNC 24, 27, 39, 84
NF90_SYNC example 40
NF90_UNLIMITED 46
NF90_WRITE 33
notation

CDL 10
constant 92

NSSDC CDF 3
number

of dimensions
maximum 45, 53

of records
maximum 47
written 47

of variable dimensions, maximum 53, 55
obtaining netCDF software 99
offset

to data, file 109
to variable, file 83
vector, coordinate 19

old definitions, restoring 27
opening a dataset 24, 33
operating systems 101
operations

attribute 69
dataset 40
netCDF 29
variable 51

optimization
platform-specific 86
UNICOS 86

order
data 18
index 18
subscript 18

packing, data 6, 71
parts, netCDF file 83
performance 2, 25, 39, 83
Perl interface vii, 100, 102
physical file format 100
platforms 101
platform-specific optimization 86
pointers 20
portability 1, 86, 101

data vii, 99
primary variables 12
problem reports, searching past 102
product, inner 19
purpose, netCDF vii
putting

character-string data 66
data 66

ragged arrays 6
random access 16
range, valid data 70
reading

data 66
character-string 66

netCDF dataset 24
real CDL data type 11
record 45, 47

dimension 10, 11, 45, 47, 51
maximum number of 47
sizes, variable 6
variables 10, 12
written, number of 47

record dimension 18, 45
record variable 18

127
record variables 12, 36
recording data history 72
relational database systems 1
removing attributes 80
renaming

attributes 27, 79
dimensions 27, 34, 49
variables 27, 67

reports, bug
making 102
searching archives 102

representation, external data 2
reserved words, CDL 16
resolution, data 71
restoring old definitions 27
returns, error 28
sampling interval 17

array section 17
scalar variables 11
scale_factor attribute 70
scaling, data 70
scientific data access, other software for 101
searching past problem reports 102
SeaSpace CDF 4
section

array
corner 17
definition 17
edges 17
mapped 17
subsampled 17

array, access example 17
CDL file data 90
fixed-size data 83
netCDF file 83

self-describing data vii
setting write fill mode 41
shape

getting variable 54
variable 11, 51

shared dataset access 39, 85, 99
short

CDL
constant 92
data type 11

data type 15, 91
signed 71
signed byte data type 16
signedness attribute 71
size

data type bit 51
largest file 6
limitation, file 6
netCDF file 66, 83

smallest file 110
variable record 6

smallest netCDF file 110
software

commercial 101
freely available 101
getting 99

software for scientific data access 101
source distribution 99
space required for attribute 69
sparse matrices 20
specification, file format 107
stdio 85
storage, data 9
stride vector 17, 51
stride, array section 17
string

character 66
fixed-length 66
variable-length 66
writing 66

structure
data 20
file 83, 100

structures
data

nested 6
subsampled array section 17
subscript order 18
summary

of Fortran90 interface 113
support, level of vi
supported languages 1
suppressing error messages 28
symbol table, variable 9
synchronizing a dataset 39
syntax

CDL 89
conventions, units 105
name

attribute 9
dimension 9
variable 9

table
CDL data types 91
variable symbol 9

Terascan 4
termination

abnormal 24
termination, abnormal 24
title attribute 72
trees 20
typical netCDF call sequence 23
UDUNITS library 105

128
UNICOS optimization 86
units 105

and attributes 14
and variables 14
converting 105
syntax conventions 105

units

attribute 70
unlimited dimension 10, 11, 45, 47, 51

appending data along 10
ID 38
limitation 6
multiple 7

unlimited length dimension 45
unsigned 71
unsigned byte data type 16
usage, netCDF 100
use, netCDF library 23
utilities 101
utilities, netCDF 101
valid data range 70
valid_max attribute 70
valid_min attribute 70
valid_range attribute 70
value

attribute 69, 76
getting 76

CDL fill 91
fill 67, 71, 91

default 67
floating-point, converting 84
indexing 20
missing 67, 70, 71
variable 11, 51

variable 11
adding 27, 34
appending data to 51
attributes 11
CDL 90
CDL initializing 90
characteristics 51
coordinate 12, 90
creating 52
data type 11, 51
data type, getting 54
declarations, CDL 11
dimensions, maximum number of 53, 55
file offset to 83
grouping 21
ID 16, 25, 51

attribute 75
ID, getting 54
index 20
information, getting 54

inquiring about 54
length 12
name

getting 54
syntax 9

operations 51
primary 12
record 10, 12
record sizes 6
renaming 27, 34, 67
scalar 11
shape 11, 51

getting 54
symbol table 9
values 11, 51
vs. attribute 14

variable dimensions, maximum 53
variable-length strings 66
variables

coordinate 12
vector

coordinate offset 19
count 17
index 17
index mapping 17, 18, 19, 51
stride 17, 51

version
library, getting 30
netCDF file format 107

very large files 84
Web, see WWW
Workshop, CDF 4
write errors 28
write fill mode, setting 41
writers, multiple 6
writing

character-string data 66
data 66

WWW
access to netCDF distribution 99
netCDF home page vii

XDR 2, 4, 20, 84

129

130

131

132

133

134

135

136

	NetCDF User’s Guide for Fortran 90
	1 Introduction 1
	2 Components of a NetCDF Dataset 9
	3 Data 15
	4 Use of the NetCDF Library 23
	5 Datasets 29
	6 Dimensions 45
	7 Variables 51
	8 Attributes 69
	9 NetCDF File Structure and Performance 83
	10 NetCDF Utilities 89
	11 Answers to Some Frequently Asked Questions 99
	Appendix A Units 105
	Appendix B File Format Specification 107
	Appendix C Summary of Fortran 90 Interface 113
	Appendix D FORTRAN 77 to Fortran 90 Transition Guide 117
	Index for Fortran 90 119

	Foreword
	Summary
	1 Introduction
	1.1 The NetCDF Interface
	1.2 NetCDF Is Not a Database Management System
	1.3 File Format
	1.4 What about Performance?
	1.5 Is NetCDF a Good Archive Format?
	1.6 Creating Self-Describing Data conforming to Conventions
	1.7 Background and Evolution of the NetCDF Interface
	1.8 What’s New Since the Previous Release?
	1.9 Limitations of NetCDF
	1.10 Future Plans for NetCDF

	2 Components of a NetCDF Dataset
	2.1 The NetCDF Data Model
	2.1.1 Naming Conventions
	2.1.2 Network Common Data Form Language (CDL)

	2.2 Dimensions
	2.3 Variables
	2.3.1 Coordinate Variables

	2.4 Attributes
	2.5 Differences between Attributes and Variables

	3 Data
	3.1 NetCDF external data types
	3.2 Data Access
	3.2.1 Forms of Data Access
	3.2.2 An Example of Array-Section Access
	3.2.3 More on General Array Section Access

	3.3 Type Conversion
	3.4 Data Structures

	4 Use of the NetCDF Library
	4.1 Creating a NetCDF Dataset
	4.2 Reading a NetCDF Dataset with Known Names
	4.3 Reading a netCDF Dataset with Unknown Names
	4.4 Writing Data in an Existing NetCDF Dataset
	4.5 Adding New Dimensions, Variables, Attributes
	4.6 Error Handling
	4.7 Compiling and Linking with the NetCDF Library

	5 Datasets
	5.1 NetCDF Library Interface Descriptions
	5.2 Get error message corresponding to error status: NF90_STRERROR
	5.3 Get netCDF library version: NF90_INQ_LIBVERS
	5.4 Create a NetCDF dataset: NF90_CREATE
	5.5 Open a NetCDF Dataset for Access: NF90_OPEN
	5.6 Put Open NetCDF Dataset into Define Mode: NF90_REDEF
	5.7 Leave Define Mode: NF90_ENDDEF
	5.8 Close an Open NetCDF Dataset: NF90_CLOSE
	5.9 Inquire about an Open NetCDF Dataset: NF90_Inquire
	5.10 Synchronize an Open NetCDF Dataset to Disk: NF90_SYNC
	5.11 Back Out of Recent Definitions: NF90_ABORT
	5.12 Set Fill Mode for Writes: NF90_SET_FILL

	6 Dimensions
	6.1 Create a Dimension: NF90_DEF_DIM
	6.2 Get a Dimension ID from Its Name: NF90_INQ_DIMID
	6.3 Inquire about a Dimension: NF90_Inquire_Dimension
	6.4 Rename a Dimension: NF90_RENAME_DIM

	7 Variables
	7.1 Language Types Corresponding to NetCDF External Data Types
	7.2 Create a Variable: NF90_DEF_VAR
	7.3 Get a Variable ID from Its Name: NF90_INQ_VARID
	7.4 Get Information about a Variable from Its ID: NF90_Inquire_Variable
	7.5 Writing Data Values: NF90_PUT_VAR
	7.6 Reading Data Values: NF90_GET_VAR
	7.7 Reading and Writing Character String Values
	7.8 Fill Values
	7.9 Rename a Variable: NF90_RENAME_VAR

	8 Attributes
	8.1 Attribute Conventions
	8.2 Create an Attribute: NF90_PUT_ATT
	8.3 Get Information about an Attribute: NF90_Inquire_Att and NF90_INQ_ATTNAME
	8.4 Get Attribute’s Values: NF90_GET_ATT
	8.5 Copy Attribute from One NetCDF to Another: NF90_COPY_ATT
	8.6 Rename an Attribute: NF90_RENAME_ATT
	8.7 Delete an Attribute: NF90_DEL_ATT

	9 NetCDF File Structure and Performance
	9.1 Parts of a NetCDF File
	9.2 The Extended XDR Layer
	9.3 Large File Support
	9.4 The I/O Layer
	9.5 UNICOS Optimization

	10 NetCDF Utilities
	10.1 CDL Syntax
	10.2 CDL Data Types
	10.3 CDL Notation for Data Constants
	10.4 ncgen
	10.5 ncdump

	11 Answers to Some Frequently Asked Questions
	Appendix A Units
	Appendix B File Format Specification
	Appendix C Summary of Fortran 90 Interface
	Appendix D FORTRAN 77 to Fortran 90 Transition Guide
	Index for Fortran 90
	Symbols

