NetCDF User’'s Guidefor Fortran 90

An Access Interface for Self-Describing, Portable Data
Version 3.5

March 2002

Russ Rew, Unidata Program Center, and
Robert Pincus, NOAA/CIRES Climate Diagnostics Center

Copyright © 2002 University Corporation for Atmospheric Research, Boulder, Colorado.

Permission is granted to make and distribute verbatim copies of this manual provided that the
copyright notice and these paragraphs are preserved on all copies. The software and any accompa-
nying written materials are provided “asis’ without warranty of any kind. UCAR expressly dis-
clamsall warranties of any kind, either expressed or implied, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an endorse-
ment by the Unidata Program Center. Unidata does not authorize any use of information from this
publication for advertising or publicity purposes.

Chapter :

NetCDF User’'s Guidefor Fortran 90

1 INtroduction 1
1.1 TheNeCDFINnterfaceo 1
1.2 NetCDF IsNot aDatabase Management System 1
1.3 FHleFormato 2
1.4 What about Performance?co i 2
15 IsNetCDFaGood ArchiveFormat? 3
1.6 Creating Self-Describing Data conforming to Conventions 3
1.7 Background and Evolution of the NetCDF Interface 3
1.8 What'sNew SincethePreviousRelease? 5
19 Limitationsof N&tCDFt 5
110 FuturePlansfor NetCDF e 7
2 Componentsof aNetCDF Dataset, 9
21 TheNetCDFDataMode e 9
211 Naming Conventionst 9
2.1.2 Network Common Data Form Language (CDL) 9
2.2 DIMENSIONS ...ttt ettt e e e e e 10
23 Vaiables 11
231 CoordinateVariables i 12
24 AUIDULES . .o 13
25 Differences between Attributesand Variables 14
3 DAl .. e 15
3.1 NetCDFexterna datatypes oo 15
3.2 DAl ACCESS . .ottt 16
321 FOrmsof DalaACCESSottt e 16
3.22 AnExampleof Array-Section ACCESS v i 17
3.23 Moreon General Array SECIONACCESSo v i i 18
3.3 TYPeCONVEISION ...ttt 19
34 DataStUCIUrES e e 20
4 UseoftheNetCDF Library i 23
41 CreatingaNetCDFDatasett 23
4.2 Reading aNetCDF Dataset withKnownNames 24
4.3 Reading anetCDF Dataset with UnknownNames 25
4.4 Writing Datain an Existing NetCDF Dataset 26
45 Adding New Dimensions, Variables, Attributes 27
46 ErrorHandling 28
4.7 Compiling and Linking with the NetCDF Library 28
S DaAlASELS ... e 29

51 NetCDF Library Interface DesCriptions.o v i 29
5.2 Get error message corresponding to error status: NFOO_STRERROR 30
5.3 Get netCDF library version: NFOO_INQ LIBVERS 30
54 CreateaNetCDF dataset: NFOO CREATE, 31
55 OpenaNetCDF Dataset for Accesss NF90_ OPEN 33
5.6 Put Open NetCDF Dataset into Define Mode: NFOO_REDEF 34
5.7 LeaveDefineMode: NFOO_ENDDEF, 35
58 Closean Open NetCDF Dataset: NFO0O CLOSEcoivnnt. 37
5.9 Inquire about an Open NetCDF Dataset: NF90_Inquire 38
5.10 Synchronize an Open NetCDF Dataset to Disk: NF9O_SYNC 39
5.11 Back Out of Recent Definitions: NFOO_ABORTccvvnvn.n.. 40
512 Set Fill Mode for Writes: NFOO_SET _FILL 41
B DIMENSIONS ..ttt e 45
6.1 CreateaDimension: NFOO DEF DIM........ 45
6.2 GetaDimensionID fromItsName: NFOO INQ DIMD 46
6.3 Inquire about aDimension: NF9O_Inquire Dimension 47
6.4 RenameaDimension: NFOO_ RENAME DIM........... 49
7 o Variables 51
7.1 Language Types Corresponding to NetCDF External DataTypes 51
7.2 CreateaVariable: NFOO_DEF VAR. i, 52
7.3 GetaVariableID fromIltsName: NFOO INQ VARID................. 54
7.4 Get Information about a Variable from ItsID: NF90 _Inquire Variable. 54
7.5 Writing DataVaues: NFOO PUT VAR it 56
7.6 Reading DataValues: NFOO_ GET VAR i, 61
7.7 Reading and Writing Character StringValues. 66
7.8 FlIVaAUES ... e 67
7.9 RenameaVariablee NFOO RENAVE VAR, 67
8 AlribULES .. 69
8.1 Attribute CONVENLIONSttt 69
8.2 Createan Attribute: NFOO_PUT_ATT 72
8.3 Get Information about an Attribute: NF9O_| nqui re_Att and
NF90_| NQ ATTNAME 74
84 Get Attribute’sValues: NFOO_GET _ATT ...t 76
8.5 Copy Attribute from One NetCDF to Another: NFOO_COPY_ATT 77
8.6 Renamean Attribute: NFOO_ RENAVE ATT, 79
8.7 Deetean Attribute: NFOO_DEL_ATTot 80
9 NetCDF FileStructureand Performance 83
9.1 Partsof aNetCDFFile. ... e 83
9.2 TheExtended XDR Layer ...t 84
9.3 LargeFileSupport 84

Chapter : i

9.4 ThellO Layer 85
95 UNICOSOPtMIZAtioONottt et e et 86
IONetCDF UtIlitieso e e e 89
10.1 CDL SYNEAX . .ottt et it e e e e e e 89
10.2 CDL Dala TyPeS . .ottt it e e e 91
10.3 CDL Notationfor DataConstantsc.covuiiiiiennnnnnn... 92
10.4 NCOBN .ot 93
105 NCAUNMD ..ot 94
11 Answersto Some Frequently Asked Questions 99
AppendiXx A UNitS ... 105
Appendix B FileFormat Specification 107
Appendix C Summary of Fortran 90
Interface 113
AppendixD FORTRAN 77 to Fortran 90 Transition Guide 117

Index for Fortran 90 119

Foreword Y,

Foreword

Unidatais a National Science Foundation-sponsored program empowering U.S. universities,
through innovative applications of computers and networks, to make the best use of atmospheric
and related data for enhancing education and research. For analyzing and displaying such data,
the Unidata Program Center offers universities several supported software packages developed by
other organizations. Underlying these is a Unidata-devel oped system for acquiring and managing
datain rea time, making practical the Unidata principle that each university should acquire and
manage its own data holdings as local requirements dictate. It is significant that the Unidata pro-
gram has no data center—the management of datais a*distributed” function.

The Network Common Data Form (netCDF) software described in this guide was originally
intended to provide a common data access method for the various Unidata applications. These
deal with avariety of data types that encompass single-point observations, time series, regularly-
spaced grids, and satellite or radar images.

The netCDF software functions as an /0O library, callable from C, FORTRAN, Fortran 90, C++,
Java, Perl, Python, or other languages for which a netCDF library is available. The library stores
and retrieves data in self-describing, machine-independent datasets. Each netCDF dataset can
contain multidimensional, named variables (with differing types that include integers, reals, char-
acters, bytes, etc.), and each variable may be accompanied by ancillary data, such as units of mea-
sure or descriptive text. The interface includes a method for appending data to existing netCDF
datasets in prescribed ways, functionality that is not unlike a (fixed length) record structure. How-
ever, the netCDF library also allows direct-access storage and retrieval of data by variable name
and index and therefore is useful only for disk-resident (or memory-resident) datasets.

NetCDF is designed to:
» Facilitate the use of common datasets by distinct applications.

* Permit datasets to be transported between or shared by dissimilar computers transparently,
that is, without translation.

* Reduce the programming effort usually spent interpreting formats.
* Reduce errors arising from misinterpreting data and ancillary data.
» Facilitate using output from one application as input to another.

» Establish an interface standard that simplifies the design of new software for accessing geo-
science data.

A measure of success has been achieved. NetCDF is now in use on computing platforms that
range from personal computers to supercomputers and include most UNIX-based workstations. It
can be used to create a complex dataset on one computer (say in FORTRAN) and retrieve that
same self-describing dataset on another computer (say in C) without intermediate translations—
netCDF datasets can be transferred across a network, or they can be accessed remotely using a

Vi

suitable network file system or other remote access protocol.

Because we believe that the use of netCDF access in non-Unidata software will benefit Unidata's
primary constituency—such use may result in more options for analyzing and displaying Unidata
information—the netCDF library is distributed without licensing or other significant restrictions,
and current versions can be obtained via anonymous FTP. Apparently the software has been well
received by awide range of institutions beyond the atmospheric science community, and a sub-
stantial number of open source and commercial data analysis systems can now accept netCDF
datasets as input.

Several organizations have adopted netCDF as a data access standard, and there are efforts under-
way to support the netCDF programming interfaces as a means to store and retrieve datain other
forms. We have encouraged and cooperated with these efforts.

Questions occasionally arise about the level of support provided for the netCDF software. Uni-
data’s formal position, stated in the copyright notice which accompanies the netCDF library, is
that the softwareis provided “asis’. In practice, the software is updated from time to time, and
Unidata intends to continue adapting the software to new platforms and development environ-
ments and maintaining the ability to access netCDF data for the foreseeable future. Because Uni-
data’s mission isto serve geoscientists at U.S. universities, problems reported by that community
necessarily receive the greatest attention.

We hope the reader will find the software useful and will give us feedback on its application as
well as suggestions for its improvement.

David Fulker, Unidata Program Center Director

University Corporation for Atmospheric Research

Summary vii

Summary

The purpose of the Network Common Data Form (netCDF) interface isto allow you to create,
access, and share array-oriented datain aform that is self-describing and portable. “ Self-describ-
ing” meansthat a dataset includes information defining the dataiit contains. “ Portable” meansthat
the data in a dataset is represented in aform that can be accessed by computers with different
ways of storing integers, characters, and floating-point numbers. Using the netCDF interface for
creating new datasets makes the data portable. Using the netCDF interface in software for data
access, management, analysis, and display can make the software more generally useful.

The netCDF software includes C, Fortran 77, and Fortran 90 interfaces for accessing netCDF
data. These libraries are available for many common computing platforms.

Java, C++ and Perl interfaces for netCDF data access are also available from Unidata. The com-
munity of netCDF users has contributed ports of the software to additiona platforms and inter-
faces for other programming languages as well. Source code for netCDF software librariesis
freely available to encourage the sharing of both array-oriented data and the software that makes
the data useful.

This User’s Guide presents the netCDF data model, but documents only the Fortran 90 interface.
Separate documents are available for the other language interfaces; also seeht t p: / / www. uni -
dat a. ucar . edu/ packages/ net cdf/ for linksto on-line versions of the C, FORTRAN, Fortran-
90, Java, C++ and Perl documentation. Reference documentation in the form of UNIX ‘man’
pages for the C and FORTRAN interfaces and extensive additional information about netCDF,
including pointers to other software that works with netCDF data, are also available from the
netCDF home page.

viii

Chapter 1: Introduction 1

1 Introduction

1.1 TheNetCDF Interface

The Network Common Data Form, or netCDF, is an interface to alibrary of data access functions
for storing and retrieving datain the form of arrays. An array isan n-dimensional (whereniso, 1,
2, ...) rectangular structure containing values of the same type (e.g., 8-bit character, 32-bit inte-
ger). A scalar (simple single value) is aO-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-describing, portable
objects that can be accessed through a simple interface. Array values may be accessed directly,
without knowing details of how the data are stored. Auxiliary information about the data, such as
what units are used, may be stored with the data. Generic utilities and application programs can
access netCDF datasets and transform, combine, analyze, or display specified fields of the data.
The development of such applications may lead to improved accessibility of data and improved
reusability of software for array-oriented data management, analysis, and display.

The netCDF software implements an abstraction, which means that all operations to access and
manipulate data in a netCDF dataset must use only the set of functions provided by the interface.
The representation of the data is hidden from applications that use the interface, so that how the
data are stored could be changed without affecting existing programs. The physical representation
of netCDF datais designed to be independent of the computer on which the data were written.

Unidata supports the netCDF interfaces for C, FORTRAN, Fortran 90, Java, C++, and Perl and
for various UNIX operating systems. The software is also ported and tested on afew other operat-
ing systems, with assistance from users with access to these systems, before each major release.
Unidata's netCDF software is freely available to encourage its widespread use.

1.2 NetCDF IsNot a Database M anagement System

Why not use an existing database management system for storing array-oriented data? Relational
database software has not proven to beideally suited for the kinds of data access supported by the
netCDF interface.

First, existing database systems that support the relational model do not support multidimensional
objects (arrays) asabasic unit of data access. Representing arrays as relations makes some useful
kinds of data access awkward and provides little support for the abstractions of multidimensional
data and coordinate systems. A quite different data model is needed for array-oriented data to
facilitate its retrieval, modification, mathematical manipulation and visualization.

Related to thisis a second problem with general-purpose database systems: their poor perfor-
mance on large arrays. Collections of satellite images, scientific model outputs and long-term glo-
bal weather observations are beyond the capabilities of most database systems to organize and
index for efficient retrieval.

Finally, general-purpose database systems provide, at significant cost in terms of both resources
and access performance, many facilities that are not needed in the analysis, management, and dis-
play of array-oriented data. For example, elaborate update facilities, audit trails, report formatting,
and mechanisms designed for transaction-processing are unnecessary for most scientific applica-
tions.

1.3 FileFormat

To achieve network-transparency (machine-independence), netCDF isimplemented in terms of an
extended version of XDR (eXternal Data Representation, seehtt p: / / www. f ags. org/ rf cs/
rfc1832. htnl), astandard for describing and encoding data. This representation provides encod-
ing of datainto machine-independent sequences of bits. It has been implemented on awide vari-
ety of computers, by assuming only that eight-bit bytes can be encoded and decoded in a
consistent way. The IEEE 754 floating-point standard is used for floating-point data representa-
tion.

The overall structure of netCDF filesis described in Chapter 9 “NetCDF File Structure and Per-
formance,” page 83.

The details of the format are described in Appendix B “File Format Specification,” page 107.
However, users are discouraged from using the format specification to develop independent low-
level software for reading and writing netCDF files, because this could lead to compatibility prob-
lemsif the format is ever modified.

1.4 What about Performance?

One of the goals of netCDF isto support efficient access to small subsets of large datasets. To sup-
port this goal, netCDF uses direct access rather than sequential access. This can be much more
efficient when the order in which datais read is different from the order in which it was written, or
when it must be read in different orders for different applications.

The amount of overhead for a portable external representation depends on many factors, including
the data type, the type of computer, the granularity of data access, and how well the implementa-
tion has been tuned to the computer on which it isrun. Thisoverhead istypically small in compar-
ison to the overall resources used by an application. In any case, the overhead of the externa
representation layer is usually areasonable price to pay for portable data access.

Although efficiency of data access has been an important concern in designing and implementing
netCDF, it is still possible to use the netCDF interface to access datain inefficient ways: for exam-
ple, by requesting a slice of data that requires a single value from each record. Advice on how to
use the interface efficiently is provided in Chapter 9 “NetCDF File Structure and Performance,”

page 83.

Chapter 1: Introduction 3

15 IsNetCDF a Good Archive Format?

NetCDF can be used as a general-purpose archive format for storing arrays. Compression of data
is possible with netCDF (e.g., using arrays of eight-bit or 16-hit integers to encode |ow-resolution
floating-point numbersinstead of arrays of 32-bit numbers), but the current version of netCDF
was not designed to achieve optimal compression of data. Hence, using netCDF may require more
space than special-purpose archive formats that exploit knowledge of particular characteristics of
specific datasets.

1.6 Creating Self-Describing Data confor ming to Conventions

The mere use of netCDF is not sufficient to make data “ self-describing” and meaningful to both
humans and machines. The names of variables and dimensions should be meaningful and con-
form to any relevant conventions. Dimensions should have corresponding coordinate variables
where sensible.

Attributes play avital rolein providing ancillary information. It isimportant to use all the relevant
standard attributes using the relevant conventions. Section 8.1 “Attribute Conventions,” page 69,
describes reserved attributes (used by the netCDF library) and attribute conventions for generic
application software.

A number of groups have defined their own additional conventions and styles for netCDF data.
Descriptions of these conventions, as well as examples incorporating them can be accessed from
the netCDF Conventions site, ht t p: / / www. uni dat a. ucar . edu/ packages/ net cdf / conven-
tions. htm.

These conventions should be used where suitable. Additional conventions are often needed for
local use. These should be contributed to the above netCDF conventions site if likely to interest
other usersin similar areas.

1.7 Background and Evolution of the NetCDF Interface

The development of the netCDF interface began with a modest goal related to Unidata's needs: to
provide a common interface between Unidata applications and real-time meteorological data.
Since Unidata software was intended to run on multiple hardware platforms with access from
both C and FORTRAN, achieving Unidata's goals had the potential for providing a package that
was useful in abroader context. By making the package widely available and collaborating with
other organizations with similar needs, we hoped to improve the then current situation in which
software for scientific data access was only rarely reused by others in the same discipline and
almost never reused between disciplines (Fulker, 1988).

Important concepts employed in the netCDF software originated in a paper (Treinish and Gough,
1987) that described data-access software developed at the NASA Goddard National Space Sci-
ence Data Center (NSSDC). Theinterface provided by this software was called the Common Data
Format (CDF). The NASA CDF was originally developed as a platform-specific FORTRAN

library to support an abstraction for storing arrays.

The NASA CDF package had been used for many different kinds of datain an extensive collec-
tion of applications. It had the virtues of simplicity (only 13 subroutines), independence from
storage format, generality, ability to support logical user views of data, and support for generic
applications.

Unidata held aworkshop on CDF in Boulder in August 1987. We proposed exploring the possibil-
ity of collaborating with NASA to extend the CDF FORTRAN interface, to define a C interface,
and to permit the access of data aggregates with asingle call, while maintaining compatibility
with the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had devel-
oped a package of C software for UNIX that supported sequential access to self-describing array-
oriented dataand a* pipes and filters’ (or “dataflow”) approach to processing, analyzing, and dis-
playing the data. This package also used the “Common Data Format” name, later changed to C-
Based Analysis and Display System (CANDIS). Unidata learned of Raymond’s work (Raymond,
1988), and incorporated some of hisideas, such as the use of named dimensions and variables
with differing shapes in a single data object, into the Unidata netCDF interface.

In early 1988, Glenn Davis of Unidata devel oped a prototype netCDF package in C that was lay-
ered on XDR. This prototype proved that a single-file, XDR-based implementation of the CDF
interface could be achieved at acceptable cost and that the resulting programs could be imple-
mented on both UNIX and VMS systems. However, it also demonstrated that providing a small,
portable, and NASA CDF-compatible FORTRAN interface with the desired generality was not
practical. NASA's CDF and Unidata’'s netCDF have since evolved separately, but recent CDF ver-
sions share many characteristics with netCDF.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development firmin San
Diego, California), a participant in the 1987 Unidata CDF workshop, independently developed a
CDF package in C that extended the NASA CDF interface in several important ways (Fahle,
1989). Like Raymond's package, the SeaSpace CDF software permitted variables with unrelated
shapes to be included in the same data object and permitted a general form of access to multidi-
mensional arrays. Fahle’'s implementation was used at SeaSpace as the intermediate form of stor-
age for avariety of stepsin their image-processing system. Thisinterface and format have
subsequently evolved into the Terascan data format.

After studying Fahle'sinterface, we concluded that it solved many of the problems we had identi-
fied intrying to stretch the NASA interface to our purposes. In August 1988, we convened a small
workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues. Attend-
ing were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDF soft-
ware), Angel Li of the University of Miami (who had implemented our prototype netCDF
software on VM S and was a potential user), and Unidata systems development staff. Consensus
was reached at the workshop after some further simplifications were discovered. A document
incorporating the results of the workshop into a proposed Unidata netCDF interface specification
was distributed widely for comments before Glenn Davis and Russ Rew implemented the first
version of the software. Comparison with other data-access interfaces and experience using

Chapter 1: Introduction 5

netCDF are discussed in Rew and Davis (1990a), Rew and Davis (1990b), Jenter and Signell
(1992), and Brown, Folk, Goucher, and Rew (1993).

In October 1991, we announced version 2.0 of the netCDF software distribution. Slight modifica-
tions to the C interface (declaring dimension lengthsto be | ong rather than i nt) improved the
usability of netCDF on inexpensive platforms such as MS-DOS computers, without requiring
recompilation on other platforms. This change to the interface required no changes to the associ-
ated file format.

Release of netCDF version 2.3 in June 1993 preserved the same file format but added single call
access to records, optimizations for accessing cross-sections involving non-contiguous data, sub-
sampling along specified dimensions (using ‘ strides’), accessing non-contiguous data (using
‘mapped array sections'), improvements to the ncdump and ncgen utilities, and an experimental
C++ interface.

In version 2.4, released in February 1996, support was added for new platforms and for the C++
interface, and significant optimizations were implemented for supercomputer architectures.

FAN (File Array Notation), software providing a high-level interface to netCDF data, was made
availablein May 1996. The capabilities of the FAN utilities include extracting and manipulating
array datafrom netCDF datasets, printing selected data from netCDF arrays, copying ASCII data
into netCDF arrays, and performing various operations (sum, mean, maximum, minimum, prod-
uct,...) on netCDF arrays. More information about FAN is available from the FAN Utilities docu-
ment, ht t p: / / www. uni dat a. ucar . edu/ packages/ netcdf/fan_utils.htmn .

1.8 What's New Sincethe Previous Release?

This Guide documents netCDF 3, which preserves the same file format as earlier versions but
includes some mgjor changes from version 2:

» complete rewrite of the netCDF library in ANSI C;

* new type-safe C and FORTRAN interfaces;

* automatic type conversion facilities;

» gignificant changesin the internal architecture, resulting in higher performance and easier
optimization on new platforms;

» support for al netCDF 2 function interfaces, globals variables, and behavior, for backward
compatibility;

* revised documentation; and fixes for reported bugs.

1.9 Limitationsof NetCDF

The netCDF data model is widely applicable to data that can be organized into a collection of
named array variables with named attributes, but there are some important limitations to the
model and itsimplementation in software. Some of these limitations are inherent in the trade-offs
among conflicting requirements that netCDF embodies, but other limitations may be addressed in

afuture version of the software.

Currently, netCDF offersalimited number of external numeric datatypes. 8-, 16-, 32-bit integers,
or 32- or 64-bit floating-point numbers. This limited set of sizes may use file space inefficiently
compared to packing datain bit fields. For example, arrays of 9-bit values must be stored in 16-bit
short integers. Storing arrays of 1- or 2-bit valuesin 8-bit valuesis even less optimal.

With the current netCDF file format, there are constraints that limit how a dataset is structured to
store more than 2 gigabytes of datain asingle netCDF dataset. This limitation isaresult of 32-bit
offsets currently used for storing relative offsets within afile. Since one of the goals of netCDF is
portable data and there are still many computing platforms that can’t deal with files larger than 2

Ghbytes, it is best to keep files that must be portable below this limit. Neveretheless, it is possible

to store terabytes of datain asingle netCDF file, as discussed in 9.3 “Large File Support,”

page 84.

Another limitation of the current model is that only one unlimited (changeable) dimension is per-
mitted for each netCDF data set. Multiple variables can share an unlimited dimension, but then
they must all grow together. Hence the netCDF model does not permit variables with several
unlimited dimensions or the use of multiple unlimited dimensionsin different variables within the
same dataset. Hence variables that have non-rectangular shapes (for example, ragged arrays) can-
not be represented conveniently.

The extent to which data can be completely self-describing is limited: thereis always some
assumed context without which sharing and archiving datawould be impractical. NetCDF permits
storing meaningful names for variables, dimensions, and attributes; units of measurein aform
that can be used in computations; text strings for attribute values that apply to an entire data set;
and simple kinds of coordinate system information. But for more complex kinds of metadata (for
exampl e, the information necessary to provide accurate georeferencing of dataon unusual grids or
from satellite images), it is often necessary to develop conventions.

Specific additions to the netCDF data model might make some of these conventions unnecessary
or allow some forms of metadata to be represented in a uniform and compact way. For example,
adding explicit georeferencing to the netCDF datamodel would simplify elaborate georeferencing
conventions at the cost of complicating the model. The problem isfinding an appropriate trade-off
between the richness of the model and its generality (i.e., its ability to encompass many kinds of
data). A datamodel tailored to capture the shared context among researchers within one discipline
may not be appropriate for sharing or combining data from multiple disciplines.

The netCDF data model does not support nested data structures such as trees, nested arrays, or
other recursive structures, primarily because the current FORTRAN interface must be able to read
and write any netCDF data set. Through use of indirection and conventionsit is possible to repre-
sent some kinds of nested structures, but the result may fall short of the netCDF goal of self-
describing data.

Finally, the current implementation limits concurrent access to a netCDF dataset. One writer and
multiple readers may access datain a single dataset simultaneously, but there is no support for
multiple concurrent writers.

Chapter 1: Introduction 7

1.10 FuturePlansfor NetCDF

Current plans are to add transparent data packing, improved concurrency support, and the ability
to access datasets larger than 2 Gigabytes. Other desirable extensions that may be added, if practi-
cal, include access to data by key or coordinate value, support for efficient structure changes (e.g.,
new variables and attributes), support for pointers to data cross-sections in other datasets, nested
arrays (allowing representation of ragged arrays, trees and other recursive data structures), and
multiple unlimited dimensions.

References

1. Brown, S. A, M. Folk, G. Goucher, and R. Rew, “ Software for Portable Scientific Data Man-
agement,” Computersin Physics, American Institute of Physics, Vol. 7, No. 3, May/June
1993.

2. Davies, H. L., “FAN - An array-oriented query language,” Second Workshop on Database
Issues for Data Visualization (Visualization 1995), Atlanta, Georgia, |EEE, October 1995.

3. Fahle, J., TeraScan Applications Programming Interface, SeaSpace, San Diego, California,
1989.

4. Fulker, D. W., “The netCDF: Self-Describing, Portable Files---a Basis for ‘ Plug-Compatible
Software Modules Connectable by Networks,” ICSU Workshop on Geophysical Informatics,
Moscow, USSR, August 1988.

5. Fulker, D. W., “Unidata Strawman for Storing Earth-Referencing Data,” Seventh International
Conference on Interactive Information and Processing Systems for Meteorol ogy, Oceanogra-
phy, and Hydrology, New Orleans, La., American Meteorology Society, January 1991.

6. Gough, M. L., NSSDC CDF Implementer’s Guide (DEC VAX/VMS) Version 1.1, National
Space Science Data Center, 88-17, NASA/Goddard Space Flight Center, 1988.

7. Jenter, H. L. and R. P. Signell, “NetCDF: A Freely-Available Software-Solution to Data-
Access Problems for Numerical Modelers,” Proceedings of the American Society of Civil
Engineers Conference on Estuarine and Coastal Modeling, Tampa, Florida, 1992.

8. Raymond, D. J.,, “A C Language-Based Modular System for Analyzing and Displaying Grid-
ded Numerical Data,” Journal of Atmospheric and Oceanic Technology, 5, 501-511, 1988.

9. Rew, R.K.andG. P. Davis, “The UnidatanetCDF: Software for Scientific Data Access,” Sxth
International Conference on Interactive Information and Processing Systems for Meteorol ogy,
Oceanography, and Hydrology, Anaheim, California, American Meteorology Society, Febru-
ary 1990.

10. Rew, R. K. and G. P. Davis, “NetCDF: An Interface for Scientific Data Access,” Computer
Graphics and Applications, |EEE, pp. 76-82, July 1990.

11. Rew, R. K. and G. P. Davis, “Unidata’s netCDF Interface for Data Access. Status and Plans,”
Thirteenth International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Anaheim, California, American Meteorology
Society, February 1997.

12. Treinish, L. A. and M. L. Gough, “A Software Package for the Data I ndependent Management
of Multi-Dimensional Data,” EOS Transactions, American Geophysical Union, 68, 633-635,
1987.

Chapter 2: Components of a NetCDF Dataset 9

2 Components of a NetCDF Dataset

2.1 TheNetCDF Data Modd

A netCDF dataset contains dimensions, variables, and attributes, which all have both a name and
an ID number by which they are identified. These components can be used together to capture the
meaning of data and relations among data fields in an array-oriented dataset. The netCDF library
allows simultaneous access to multiple netCDF datasets which are identified by dataset ID num-
bers, in addition to ordinary file names.

A netCDF dataset contains a symbol table for variables containing their name, data type, rank
(number of dimensions), dimensions, and starting disk address. Each element is stored at a disk
addresswhichisalinear function of the array indices (subscripts) by which it isidentified. Hence,
these indices need not be stored separately (asin arelational database). This provides afast and
compact storage method.

2.1.1 Naming Conventions

The names of dimensions, variables and attributes consist of arbitrary sequences of aphanumeric
characters (aswell as underscore ‘" and hyphen ‘- "), beginning with a letter or underscore.
(However names commencing with underscore are reserved for system use.) Caseissignificant in
netCDF names.

2.1.2 Network Common Data Form Language (CDL)

We will use asmall netCDF example to illustrate the concepts of the netCDF data model. This
includes dimensions, variables, and attributes. The notation used to describe this simple netCDF
object is called CDL (network Common Data form Language), which provides a convenient way
of describing netCDF datasets. The netCDF system includes utilities for producing human-ori-
ented CDL text files from binary netCDF datasets and vice versa.

netcdf exanple_1 { // exanple of CDL notation for a net CDF dat aset

di mensi ons: /1 dinmension names and | engths are declared first
lat =5, lon = 10, level = 4, tine = unlimted,
vari abl es: /1 variable types, nanes, shapes, attributes

fl oat temp(time,level,lat,lon);

tenmp: | ong_nane "t enperature";

tenmp:units "cel sius";
fl oat rh(tinme,lat,lon);

rh:long_nane = "relative humdity";

rh:valid range = 0.0, 1.0; /1 mn and nmax
i nt lat(lat), lon(lon), level(level);

lat:units = "degrees_north";

l[on:units = "degrees_east";

10

[evel :units "mllibars"

short time(tine);
time:units

/1 global attributes
:source = "Fictional Mdel Qutput”;

"hours since 1996-1-1";

dat a: /1 optional data assignnents

I evel = 1000, 850, 700, 500;

| at = 20, 30, 40, 50, 60

[on = -160, - 140, - 118, - 96, - 84, - 52, - 45, - 35, - 25, - 15;

tinme = 12;

rh =.5.2,.4,.2,.3,.2,.4,.5,.6,.7
1,.3,.1,.1,.1,.1,.5,.7,.8,.8
1,.2,.2,.2,.2,.5,.7,.8,.9,.9
1,.2,.3,.3,.3,.3,.7,.8,.9,.9
0,.1,.2,.4,.4,.4,.4,.7,.9,.9

}

The CDL notation for anetCDF dataset can be generated automatically by using ncdunp, autility
program described later (see Section 10.5 “ncdunp,” page 94). Another netCDF utility, ncgen,
generates anetCDF dataset (or optionally C or FORTRAN source code containing calls needed to
produce a netCDF dataset) from CDL input (see Section 10.4 “ncgen,” page 93).

The CDL notation is simple and largely self-explanatory. It will be explained more fully aswe
describe the components of a netCDF dataset. For now, note that CDL statements are terminated
by a semicolon. Spaces, tabs, and newlines can be used freely for readability. Commentsin CDL
follow the characters‘//’ on any line. A CDL description of a netCDF dataset takes the form

net CDF name {
di nensi ons:
vari abl es:
dat a:

}

where the name is used only as adefault in constructing file names by the ncgen utility. The CDL
description consists of three optional parts, introduced by the keywords di mensi ons, vari abl es,
and dat a. NetCDF dimension declarations appear after the di nensi ons keyword, netCDF vari-
ables and attributes are defined after thevari abl es keyword, and variable data assignments
appear after the dat a keyword.

2.2 Dimensions

A dimension may be used to represent areal physical dimension, for example, time, latitude, lon-
gitude, or height. A dimension might aso be used to index other quantities, for example station or
model-run-number.

A netCDF dimension has both a name and alength. A dimension length is an arbitrary positive
integer, except that one dimension in a netCDF dataset can have the length UNLI M TED.

Chapter 2: Components of a NetCDF Dataset 11

Such adimension is called the unlimited dimension or the record dimension. A variable with an
unlimited dimension can grow to any length along that dimension. The unlimited dimension index
islike arecord number in conventional record-oriented files. A netCDF dataset can have at most
one unlimited dimension, but need not have any. If avariable has an unlimited dimension, that
dimension must be the most significant (slowest changing) one. Thus any unlimited dimension
must be the first dimension in a CDL shape and the last dimension in corresponding Fortran-90
array declarations.

CDL dimension declarations may appear on one or more lines following the CDL keyword
di mensi ons. Multiple dimension declarations on the same line may be separated by commas.
Each declaration is of the form name = length.

There are four dimensionsin the above example: | at, | on, | evel , andti nme. Thefirst three are
assigned fixed lengths; t i me is assigned the length UNLI M TED, which meansit is the unlimited
dimension.

The basic unit of named data in a netCDF dataset is avariable. When avariable is defined, its
shape is specified as alist of dimensions. These dimensions must already exist. The number of
dimensionsis called the rank (a.k.a. dimensionality). A scalar variable hasrank 0, a vector has
rank 1 and amatrix hasrank 2.

It is possible to use the same dimension more than once in specifying a variable shape (but this
was not possible in previous netCDF versions). For example, correl ati on(i nstrument,

i nst runent) could be amatrix giving correlations between measurements using different instru-
ments. But data whose dimensions correspond to those of physical space/time should have a
shape comprising different dimensions, even if some of these have the same length.

2.3 Variables

Variables are used to store the bulk of the datain anetCDF dataset. A variable represents an array
of values of the same type. A scalar value is treated as a O-dimensional array. A variable hasa
name, a datatype, and a shape described by its list of dimensions specified when the variableis
created. A variable may also have associated attributes, which may be added, deleted or changed
after the variable is created.

A variable external datatypeisone of asmall set of netCDF types that have the names
NF9O0_BYTE (with synonym NF90_I NT1), NFOO_CHAR, NF90_SHORT (with Synonym NF90_I NT2),
NF90_I NT (with synonym NF90_I NT4), NF90_FLOAT (with synonyms NFOO_REAL and
NF90_REAL4), and NFO0_DOUBLE (with synonym NF90_REALS8) in the Fortran-90 interface.

In the CDL notation, these types are given the smpler names byt e, char, short, i nt, fl oat, and
doubl e. real may be used asasynonym for f | oat inthe CDL notation. | ong isadeprecated
synonym for i nt . The exact meaning of each of the typesis discussed in Section 3.1 “NetCDF
external datatypes,” page 15.

CDL variable declarations appear after the vari abl e keyword in a CDL unit. They have the form

12

type variable name (dim_name_1,dim name 2, ...);
for variables with dimensions, or

type variable_name;
for scalar variables.

In the above CDL example there are six variables. As discussed below, four of these are coordi-
nate variables. The remaining variables (sometimes called primary variables), t enp and r h, con-
tain what is usually thought of as the data. Each of these variables has the unlimited dimension
time asitsfirst dimension, so they are called record variables. A variable that isnot arecord
variable has afixed length (number of data values) given by the product of its dimension lengths.
The length of arecord variable is also the product of its dimension lengths, but in this case the
product is variable because it involves the length of the unlimited dimension, which can vary. The
length of the unlimited dimension is the number of records.

2.3.1 Coordinate Variables

Itislegal for avariable to have the same name as a dimension. Such variables have no specia
meaning to the netCDF library. However there is a convention that such variables should be
treated in a special way by software using thislibrary.

A variable with the same name as adimension is called a coordinate variable. It typically defines
aphysical coordinate corresponding to that dimension. The above CDL example includes the
coordinate variables| at , 1 on, | evel andti ne, defined as follows:

i nt lat(lat), lon(lon), level(level);
short time(tine);

dat a:

| evel = 1000, 850, 700, 500;

| at = 20, 30, 40, 50, 60;

| on = -160, -140,-118,-96,-84,-52,-45, -35, - 25, - 15;
time = 12;

These define the latitudes, longitudes, barometric pressures and times corresponding to positions
along these dimensions. Thusthere is data at altitudes corresponding to 1000, 850, 700 and 500
millibars; and at latitudes 20, 30, 40, 50 and 60 degrees north. Note that each coordinate variable
isavector and has a shape consisting of just the dimension with the same name.

A position along a dimension can be specified using an index. Thisis an integer with aminimum
value of 1 for Fortran-90 programs. Thus the 700 millibar level would have anindex value of 3in
the example above.

If adimension has a corresponding coordinate variable, then this provides an alternative, and
often more convenient, means of specifying position along it. Current application packages that
make use of coordinate variables commonly assume they are numeric vectors and strictly mono-

Chapter 2: Components of a NetCDF Dataset 13

tonic (all values are different and either increasing or decreasing).

2.4 Attributes

NetCDF attributes are used to store data about the data (ancillary data or metadata), similar in
many ways to the information stored in data dictionaries and schema in conventional database
systems. Most attributes provide information about a specific variable. These are identified by the
name (or ID) of that variable, together with the name of the attribute.

Some attributes provide information about the dataset as a whole and are called global attributes.
These are identified by the attribute name together with a blank variable name (in CDL) or a spe-
cial null “global variable” ID (in C or Fortran).

An attribute has an associated variable (the null “global variable” for aglobal attribute), aname, a
datatype, alength, and avalue. The current version treats all attributes as vectors; scalar values
are treated as single-element vectors.

Conventional attribute names should be used where applicable. New names should be as mean-
ingful as possible.

The external type of an attribute is specified when it is created. The types permitted for attributes
are the same as the netCDF external data types for variables. Attributes with the same name for
different variables should sometimes be of different types. For example, the attribute val i d_max
specifying the maximum valid data value for avariable of typei nt should be of typei nt,
whereas the attribute val i d_nmax for avariable of type doubl e should instead be of type doubl e.

Attributes are more dynamic than variables or dimensions; they can be deleted and have their
type, length, and values changed after they are created, whereas the netCDF interface provides no
way to delete a variable or to change its type or shape.

The CDL notation for defining an attribute is
variable_name:attribute name = list_of values,
for avariable attribute, or
:attribute_name = list_of values;

for aglobal attribute. The type and length of each attribute are not explicitly declared in CDL;
they are derived from the values assigned to the attribute. All values of an attribute must be of the
same type. The notation used for constant values of the various netCDF typesis discussed later
(see Section 10.3 “CDL Notation for Data Constants,” page 92).

In the netCDF example (see Section 2.1.2 “Network Common Data Form Language (CDL),”
page 9), uni t s isan attribute for the variable | at that has a 13-character array value
‘degrees_north’. Andval i d_r ange isan attribute for the variabler h that has length 2 and val-
ues‘0o.0’ and‘1.0'.

14

One global attribute---sour ce---is defined for the example netCDF dataset. Thisis a character
array intended for documenting the data. Actual netCDF datasets might have more global
attributes to document the origin, history, conventions, and other characteristics of the dataset asa
whole.

Most generic applications that process netCDF datasets assume standard attribute conventions
and it is strongly recommended that these be followed unless there are good reasons for not doing
s0. See Section 8.1 “Attribute Conventions,” page 69, for information about uni t s, | ong_nane,
valid_mn,valid_max,valid_ range,scal e factor,add_offset, Fill Val ue, and other
conventional attributes.

Attributes may be added to a netCDF dataset long after it isfirst defined, so you don’t haveto
anticipate all potentially useful attributes. However adding new attributes to an existing dataset
can incur the same expense as copying the dataset. See Chapter 9 “NetCDF File Structure and
Performance,” page 83, for a more extensive discussion.

2.5 Differences between Attributes and Variables

In contrast to variables, which areintended for bulk data, attributes are intended for ancillary data,
or information about the data. The total amount of ancillary data associated with a netCDF object,
and stored in its attributes, is typicaly small enough to be memory-resident. However variables
are often too large to entirely fit in memory and must be split into sections for processing.

Another difference between attributes and variables is that variables may be multidimensional.
Attributes are all either scalars (single-valued) or vectors (asingle, fixed dimension).

Variables are created with a name, type, and shape before they are assigned data values, so a vari-
able may exist with no values. The value of an attribute must be specified when it is created, so no
attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned to vari-
ables may have the same units as the variable (for example, val i d_r ange) or have no units (for
example, scal e_f act or). If you want to store data that requires units different from those of the
associated variable, it is better to use a variable than an attribute. More generaly, if datarequire
ancillary datato describe them, are multidimensional, require any of the defined netCDF dimen-
sions to index their values, or require a significant amount of storage, that data should be repre-
sented using variables rather than attributes.

Chapter 3: Data 15

3 Data

This chapter discusses the six primitive netCDF external data types, the kinds of data access sup-
ported by the netCDF interface, and how data structures other than arrays may be implemented in
anetCDF dataset.

3.1 NetCDF external datatypes

The external types supported by the netCDF interface are:

char 8-hit characters intended for representing text.

byt e 8-hit signed or unsigned integers (see discussion below).
short 16-bit signed integers.

i nt 32-hit signed integers.

float or real 32-bit |EEE floating-point.
doubl e 64-hit | EEE floating-point.

These types were chosen to provide a reasonably wide range of trade-offs between data precision
and number of bits required for each value. These external data types are independent from what-
ever internal data types are supported by a particular machine and language combination.

Thesetypes are called “external”, because they correspond to the portable external representation
for netCDF data. When a program reads external netCDF datainto an internal variable, the datais
converted, if necessary, into the specified internal type. Similarly, if you write internal datainto a
netCDF variable, this may cause it to be converted to adifferent external type, if the external type
for the netCDF variable differs from the internal type.

The separation of external and internal types and automatic type conversion have several advan-
tages. You need not be aware of the external type of numeric variables, since automatic conver-
sion to or from any desired numeric typeisavailable. You can use thisfeature to ssmplify code, by
making it independent of external types, using a sufficiently wide internal type, e.g., double preci-
sion, for numeric netCDF data of several different external types. Programs need not be changed
to accommodate a change to the external type of avariable.

If conversion to or from an external numeric type is necessary, it is handled by the library. This
automatic conversion and separation of external data representation from internal data types will
become even more important in a future version of netCDF, when new externa types will be
added for packed data for which there may be no natural corresponding internal type, for exam-
ple, packed arrays of 11-bit values.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an internal short integer type may not be

16

able to hold data stored externally as an integer. When accessing an array of values, arange error
isreturned if one or more values are out of the range of representable values, but other values are
converted properly.

Note that mereloss of precision in type conversion does not return an error. Thus, if you read dou-
ble precision values into a single-precision floating-point variable, for example, no error results
unless the magnitude of the double precision value exceeds the representable range of single-pre-
cision floating point numbers on your platform. Similarly, if you read alarge integer into a float
incapable of representing all the bits of the integer in its mantissa, thisloss of precision will not
result in an error. If you want to avoid such precision loss, check the external types of the vari-
ables you access to make sure you use an internal type that has adequate precision.

The names for the primitive external datatypes (byt e, char, short,int,fl oat orreal , and
doubl e) are reserved words in CDL, so the names of variables, dimensions, and attributes must
not be type names.

Itispossibleto interpret byt e dataas either signed (-128 to 127) or unsigned (0 to 255). However,
when reading byte data to be converted into other numeric types, it isinterpreted as signed.

See Section 2.3 “Variables,” page 11, for the correspondence between netCDF external datatypes
and the data types of alanguage.

3.2 DataAccess

To access (read or write) netCDF data you specify an open netCDF dataset, a netCDF variable,
and information (e.g., indices) identifying elements of the variable. The name of the access func-
tion corresponds to the internal type of the data. If the internal type has a different representation
from the external type of the variable, a conversion between the internal type and external type
will take place when the data is read or written.

Access to datais direct, which means you can access a small subset of data from alarge dataset
efficiently, without first accessing all the data that precedes it. Reading and writing data by speci-
fying avariable, instead of a position in afile, makes data access independent of how many other
variables are in the dataset, making programs immune to data format changes that involve adding
more variables to the data.

Inthe C, FORTRAN, and Fortran 90 interfaces, datasets are not specified by name every timeyou
want to access data, but instead by a small integer called adataset I1D, obtained when the dataset is
first created or opened.

Similarly, avariable is not specified by name for every data access either, but by avariable ID, a
small integer used to identify each variable in anetCDF dataset.

3.2.1 Formsof Data Access

The netCDF interface supports several forms of direct access to data valuesin an open netCDF

Chapter 3: Data 17

dataset. We describe each of these forms of accessin order of increasing generality:

accessto all elements;

access to individual elements, specified with an index vector;

access to array sections, specified with an index vector, and count vector;

access to subsampled array sections, specified with an index vector, count vector, and stride
vector; and

» access to mapped array sections, specified with an index vector, count vector, stride vector,
and an index mapping vector.

The four types of vector (index vector, count vector, stride vector and index mapping vector) each
have one element for each dimension of the variable. Thus, for an n-dimensional variable (rank =
n), n-element vectors are needed. If the variable is a scalar (no dimensions), these vectors are
ignored.

An array sectionisa“dab” or contiguous rectangular block that is specified by two vectors. The
index vector gives the indices of the element in the corner closest to the origin. The count vector
gives the lengths of the edges of the slab along each of the variable’s dimensions, in order. The
number of values accessed is the product of these edge lengths.

A subsampled array section is similar to an array section, except that an additional stride vector
is used to specify sampling. This vector has an element for each dimension giving the length of
the strides to be taken along that dimension. For example, a stride of 4 means every fourth value
along the corresponding dimension. The total number of values accessed is again the product of
the elements of the count vector.

A mapped array section is similar to a subsampled array section except that an additional index
mapping vector allows one to specify how data values associated with the netCDF variable are
arranged in memory. The offset of each value from the reference location, is given by the sum of
the products of each index (of the imaginary internal array which would be used if there were no
mapping) by the corresponding element of the index mapping vector. The number of values
accessed is the same as for a subsampled array section.

The use of mapped array sections is discussed more fully below, but first we present an example
of the more commonly used array-section access.

3.2.2 An Example of Array-Section Access

Assume that in our earlier example of a netCDF dataset (see Section 2.1.2 “Network Common
Data Form Language (CDL),” page 9), we wish to read a cross-section of all the datafor thet enp
variable at one level (say, the second), and assume that there are currently three records (t i me val-
ues) in the netCDF dataset. Recall that the dimensions are defined as

lat =5, lon = 10, level =4, time = unlinted;

and the variablet enp is declared as

18

fl oat temp(time, level, lat, lon);
in the CDL notation.

In Fortran-90, the dimensions are reversed from the CDL declaration with the first dimension
varying fastest and the record dimension as the last dimension of arecord variable. Thus the For-
tran-90 declaration for a variable that holds data for only one level is

| NTEGER, PARAMETER :: LATS = 5, LONS = 10, LEVELS =1, TIMES = 3
REAL, DI MENSI ON(LONS, LATS, LEVELS, TIMES) :: TEWP

To specify the block of data that represents just the second level, all times, al latitudes, and all
longitudes, we need to provide a start index and some edge lengths. The start index should be (1,
1, 2, 1) in Fortran-90, because we want to start at the beginning of each of theti me, | on, and | at
dimensions, but we want to begin at the second value of thel evel dimension. The edge lengths
should be (10, 5, 1, 3) in Fortran-90, since we want to get datafor all threet i me values, only one
| evel value, al fivel at values, and all 101 on values. We should expect to get atotal of 150
floating-point values returned (3* 1 * 5* 10), and should provide enough space in our array for
this many. The order in which the data will be returned is with the first dimension, LON, varying
fastest:

TEMP(
TEMP(
TEMP(
TEMP(

1)
1)
1)
1)

rPERPEPE
b

B

TEMP(8, , 3)
TEMP(9, . 3)
TEMP(10, 5, 2, 3)

oo
NN

Different dimension orders for the C, FORTRAN, or other language interfaces do not reflect a dif-
ferent order for values stored on the disk, but merely different orders supported by the procedural
interfaces to the languages. In general, it does not matter whether a netCDF dataset is written
using the C, FORTRAN, or another language interface; netCDF datasets written from any sup-
ported language may be read by programs written in other supported languages.

3.2.3 Moreon General Array Section Access

The use of mapped array sections allows non-trivial relationships between the disk addresses of
variable elements and the addresses where they are stored in memory. For example, amatrix in
memory could be the transpose of that on disk, giving aquite different order of elements. In areg-
ular array section, the mapping between the disk and memory addressesistrivial: the structure of
thein-memory values (i.e., the dimensional lengths and their order) isidentical to that of the array
section. In amapped array section, however, an index mapping vector is used to define the map-

Chapter 3: Data 19

ping between indices of netCDF variable elements and their memory addresses.

With mapped array access, the offset (number of array elements) from the origin of amemory-res-

ident array to a particular point is given by the inner product! of the index mapping vector with
the point’s coordinate offset vector. A point’s coordinate offset vector gives, for each dimension,
the offset from the origin of the containing array to the point. In Fortran-90, the values of apoint’s
coordinate offset vector are one less than the corresponding values of the point’s coordinate vec-
tor, e.g., the array element A(3,5) has coordinate offset vector [2, 4].

The index mapping vector for aregular array section would have—in order from most rapidly
varying dimension to most slowly—a constant 1, the product of that value with the edge length of
the most rapidly varying dimension of the array section, then the product of that value with the
edge length of the next most rapidly varying dimension, and so on. In a mapped array, however,
the correspondence between netCDF variable disk locations and memory locations can be differ-
ent.

A detailed example of mapped array accessis presented in the description of the interfaces for
mapped array access. See Section 7.6 “Reading Data Values: NFOO_GET_VAR,” page 61.

Note that, although the netCDF abstraction allows the use of subsampled or mapped array-section
access, their use is not required. If you do not need these more general forms of access, you may
ignore these capabilities and use single value access or regular array section access instead.

3.3 TypeConversion

Each netCDF variable has an external type, specified when the variableisfirst defined. This exter-
nal type determines whether the data is intended for text or numeric values, and if numeric, the
range and precision of numeric values.

If the netCDF external typefor avariableischar, only character datarepresenting text strings can
be written to or read from the variable. No automatic conversion of text datato a different repre-
sentation is supported.

If the type is numeric, however, the netCDF library allows you to access the variable data as a dif-
ferent type and provides automatic conversion between the numeric datain memory and the data
in the netCDF variable. For example, if you write a program that deals with all numeric data as
double-precision floating point values, you can read netCDF data into double-precision arrays
without knowing or caring what the external type of the netCDF variables are. On reading netCDF
data, integers of various sizes and single-precision floating-point values will all be converted to
double-precision, if you use the data access interface for double-precision values. Of course, you
can avoid automatic numeric conversion by using the netCDF interface for avalue type that corre-
sponds to the external data type of each netCDF variable, where such value types exist.

1. Theinner product of two vectors[x0, X1, ..., xn] and [y0, y1, ..., yn] isjust x0*y0 +
x1*yl + ... + xn*yn.

20

The automatic numeric conversions performed by netCDF are easy to understand, because they
behave just like assignment of data of one type to a variable of a different type. For example, if
you read floating-point netCDF data as integers, the result is truncated towards zero, just as it
would be if you assigned afloating-point value to an integer variable. Such truncation is an exam-
ple of the loss of precision that can occur in numeric conversions.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an integer may not be able to hold data
stored externally as an | EEE floating-point number. When accessing an array of values, arange
error isreturned if one or more values are out of the range of representable values, but other val-
ues are converted properly.

Note that mereloss of precision in type conversion does not result in an error. For example, if you
read double precision values into an integer, no error results unless the magnitude of the double
precision value exceeds the representable range of integers on your platform. Similarly, if you
read alarge integer into afloat incapable of representing all the bits of the integer in its mantissa,
thisloss of precision will not result in an error. If you want to avoid such precision loss, check the
external types of the variables you access to make sure you use an internal type that has a compat-
ible precision.

Whether arange error occurs in writing a large floating-point value near the boundary of repre-
sentable values may be depend on the platform. The largest floating-point value you can writeto a
netCDF float variableisthe largest floating-point number representable on your system that isless
than 2 to the 128th power. The largest double precision value you can write to adouble variableis
the largest double-precision number representable on your system that islessthan 2 to the 1024th
power.

This automatic conversion and separation of external data representation from internal datatypes
will become even more important in a future version of netCDF, when new external typeswill be
added for packed data for which there is no natural corresponding internal type, for example,
arrays of 11-bit values.

3.4 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection of
named arrays with attached vector attributes. NetCDF is not particularly well-suited for storing
linked lists, trees, sparse matrices, ragged arrays or other kinds of data structures requiring point-
ers.

It is possible to build other kinds of data structures from sets of arrays by adopting various con-
ventions regarding the use of datain one array as pointers into another array. The netCDF library
won't provide much help or hindrance with constructing such data structures, but netCDF pro-
vides the mechanisms with which such conventions can be designed.

The following example stores aragged array r agged_mat using an attribute r ow_i ndex to name
an associated index variable giving the index of the start of each row. In this example, the first row

Chapter 3: Data 21

contains 12 elements, the second row contains 7 elements (19 - 12), and so on.

fl oat ragged_nmat (max_el enent s) ;

ragged _mat:row_ i ndex = "row start”;
i nt row start (nmax_rows);
dat a:
row start =0, 12, 19,

As another example, netCDF variables may be grouped within a netCDF dataset by defining
attributes that list the names of the variables in each group, separated by a conventional delimiter
such as a space or comma. Using a naming convention for attribute names for such groupings per-
mits any number of named groups of variables. A particular conventional attribute for each vari-
able might list the names of the groups of which it isamember. Use of attributes, or variables that
refer to other attributes or variables, provides aflexible mechanism for representing some kinds of
complex structures in netCDF datasets.

22

Chapter 4: Use of the NetCDF Library 23

4 Useof the NetCDF Library

You can use the netCDF library without knowing about all of the netCDF interface. If you are cre-
ating a netCDF dataset, only a handful of routines are required to define the necessary dimen-
sions, variables, and attributes, and to write the data to the netCDF dataset. (Even less are needed
if you usethencgen utility, see 10.4“ncgen,” page 93, to create the dataset before running a pro-
gram using netCDF library callsto write data.) Similarly, if you are writing software to access
data stored in a particular netCDF object, only a small subset of the netCDF library is required to
open the netCDF dataset and access the data. Authors of generic applications that access arbitrary
netCDF datasets need to be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for common

uses. For clarity we present only the names of routines; omit declarations and error checking; omit
the type-specific suffixes of routine names for variables and attributes; indent statements that are

typically invoked multiple times; and use ... to represent arbitrary sequences of other statements.

Full parameter lists are described in later chapters.

4.1 Creating a NetCDF Dataset

Hereisatypical sequence of netCDF calls used to create a new netCDF dataset:

NF90_ CREATE I create net CDF dataset: enter define node
NFéb_DEF_DI M I define dinensions: fromnanme and | ength
NFéb_DEF_VAR I define variables: fromnane, type, dins
NFéb_PUT_ATT I assign attribute val ues

NFQO_éNDDEF I end definitions: |eave define node
NFéb_PUT_VAR I provide values for variable

NFQO_dCBE I close: save new net CDF dat aset

Only one call is needed to create a netCDF dataset, at which point you will bein the first of two

netCDF modes. When accessing an open netCDF dataset, it is either in define mode or data mode.
In define mode, you can create dimensions, variables, and new attributes, but you cannot read or

write variable data. In data mode, you can access data and change existing attributes, but you are
not permitted to create new dimensions, variables, or attributes.

One call to NFO0_DEF_DI Mis needed for each dimension created. Similarly, one call to
NF90_DEF VAR is needed for each variable creation, and one call to a member of the
NF90_PUT_ATT family is needed for each attribute defined and assigned a value. To leave define
mode and enter data mode, call NFO0_ENDDEF.

24

Once in data mode, you can add new data to variables, change old values, and change values of
existing attributes (so long as the attribute changes do not require more storage space). Data of all
typesiswritten to anetCDF variable using the NF9O_PUT_VAR subroutine. Single values, arrays,
or array sections may be supplied to NFO0_PUT_VAR; optional arguments allow the writing of sub-
sampled or mapped portions of the variable. (Subsampled and mapped access are general forms of
data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing by call-
ing NF90_CLOSE. By default, access to the file system is buffered by the netCDF library. If a pro-
gram terminates abnormally with netCDF datasets open for writing, your most recent
maodifications may be lost. This default buffering of datais disabled by setting the NFOO_SHARE
flag when opening the dataset. But even if thisflag is set, changes to attribute values or changes
made in define mode are not written out until NFOO_SYNC or NF9O_CLOSE is called.

4.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the names of not only the netCDF datasets, but also
the names of their dimensions, variables, and attributes. (Otherwise you would have to do
“inquire” calls.) The order of typical callsto read datafrom those variablesin anetCDF dataset is.

NF90_OPEN I open existing net COF dataset
NFS')'(.)_I NQ DI M D I get dinension IDs
NFS')'(.)_I NQ_VARI D I get variable |IDs
NFS'B'(.)_GET_ATT I get attribute val ues
NFS')'(.)_GET_VAR I get values of variables
NF90_a_®E I cl ose net CDF dat aset

First, asingle call opensthe netCDF dataset, given the dataset name, and returns anetCDF ID that
is used to refer to the open netCDF dataset in all subsequent calls.

Next, acall to NF90_I NQ DI M Dfor each dimension of interest gets the dimension ID from the
dimension name. Similarly, each required variable ID is determined from its name by acall to
NF90_I NQ_VARI D. Once variable IDs are known, variable attribute values can be retrieved using
the netCDF ID, thevariable ID, and the desired attribute name asinput to NFOO_GET_ATT for each
desired attribute. Variable data values can be directly accessed from the netCDF dataset with calls
to NF9O_GET_VAR.

Finally, the netCDF dataset is closed with NF90_CLOSE. Thereis no need to close a dataset open
only for reading.

Chapter 4: Use of the NetCDF Library 25

4.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing every
variable, without needing to know in advance the names of these variables. Similarly, the names
of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF datasets by
calling inquire functions. These return information about awhole netCDF dataset, a dimension, a
variable, or an attribute. The following template illustrates how they are used:

NF90_OPEN I open existing net COF dataset
NFS')'(.)_I nquire I find out what is in it
NFS')'(.)_I nqui re_Di mension ! get dinmension nanes, |engths
NFS')'(.)_I nqui re_Variable ! get variable nanes, types, shapes
NFS')'(.)_I NQ_ATTNAME I get attribute nanes

NF90 Inquire Attribute ! get attribute val ues

NFO90_GET_ATT I get attribute val ues
NF90_ GET_ VAR I get values of variables
NF90_CLOSE I cl ose net CDF dat aset

Asin the previous example, asingle call opens the existing netCDF dataset, returning a netCDF
ID. This netCDF ID is given to the NF90_I nqui r e routine, which returns the number of dimen-
sions, the number of variables, the number of global attributes, and the ID of the unlimited dimen-
sion, if thereisone.

All theinquire functions are inexpensive to use and require no 1/0, since the information they pro-
vide is stored in memory when a netCDF dataset is first opened.

Dimension I Ds use consecutive integers, beginning at 1. Also dimensions, once created, cannot be
deleted. Therefore, knowing the number of dimension IDsin anetCDF dataset means knowing all
the dimension IDs: they aretheintegers 1, 2, 3, ...up to the number of dimensions. For each
dimension ID, acall to the inquire function NF90_I nqui re_Di mensi on returns the dimension
name and length.

Variable IDs are also assigned from consecutive integers 1, 2, 3, ... up to the number of variables.
These can be used in NF90_I nqui re_Vari abl e callsto find out the names, types, shapes, and the
number of attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calsto NFO0O | NQ ATTNAME
return the name for each attribute given the netCDF ID, variable ID, and attribute number. Armed
with the attribute name, acall to NFO0_Inquire_Variablereturnsits type and length. Given the

26

type and length, you can allocate enough space to hold the attribute values. Then acall to
NF90_GET_ATT returns the attribute values.

Once the IDs and shapes of netCDF variables are known, data values can be accessed by calling
NF90_GET_VAR.

4.4 Writing Datain an Existing NetCDF Dataset

With write access to an existing netCDF dataset, you can overwrite data values in existing vari-
ables or append more data to record variables along the unlimited (record) dimension. To append
more data to non-record variables requires changing the shape of such variables, which means
creating a new netCDF dataset, defining new variables with the desired shape, and copying data.
The netCDF data model was not designed to make such “schema changes’ efficient or easy, so it
is best to specify the shapes of variables correctly when you create a netCDF dataset, and to antic-
ipate which variables will later grow by using the unlimited dimension in their definition.

The following code template lists a typical sequence of calls to overwrite some existing values
and add some new records to record variables in an existing netCDF dataset with known variable
names:

NF90_OPEN I open existing net COF dat aset
i\.ll.:90_l NQ VARI D I get variable |IDs
II\IIII:QO_PUT_VAR I provide new values for variables, if any
i\.ll.:QO_PUT_ATT I provide new values for attributes, if any
NFgo;d_(BE I cl ose net CDF dat aset

A netCDF dataset isfirst opened by the NF90_OPEN call. This call puts the open dataset in data
mode, which means existing data values can be accessed and changed, existing attributes can be
changed, but no new dimensions, variables, or attributes can be added.

Next, callsto NFO0_I NQ VARI D get the variable ID from the name, for each variable you want to
write. Then each call to NF90_PUT_VAR writes data into a specified variable, either asingle value
at atime, or awhole set of values at atime, depending on which variant of the interface is used.
The calls used to overwrite values of non-record variables are the same as are used to overwrite
values of record variables or append new datato record variables. The differenceisthat, with
record variables, the record dimension is extended by writing values that don’t yet exist in the
dataset. Thisextends al record variables at once, writing “fill values’ for record variables for
which the data has not yet been written (but see 7.8 “Fill Values,” page 67 for how to specify dif-
ferent behavior).

CallstoNF90_PUT_ATT may be used to change the values of existing attributes, although data that
changes after afileis created istypically stored in variables rather than attributes.

Finally, you should explicitly close any netCDF datasets into which data has been written by call-

Chapter 4: Use of the NetCDF Library 27

ing NF90_ CLOSE before program termination. Otherwise, modifications to the dataset may be lost.

45 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively atered. New dimensions, variables, and attributes
can be added or existing ones renamed, and existing attributes can be deleted. Existing dimen-
sions, variables, and attributes can be renamed. The following code template lists atypical
sequence of callsto add new netCDF components to an existing dataset:

NF90_OPEN I open existing net COF dat aset
NFéb_REDEF I put it into define node
NF90_DEF_Di M | define additional dinensions (if any)
NFES(S_DEF_VAR I define additional variables (if any)
NFéb_PUT_ATT I define other attributes (if any)
NF90;I.ENDDEF I check definitions, |eave define node
NFéb_PUT_VAR I provide new vari abl e val ues
NFgo;d_(BE I cl ose net CDF dat aset

A netCDF dataset isfirst opened by the NF90_OPEN call. This call puts the open dataset in data
mode, which means existing data values can be accessed and changed, existing attributes can be
changed (so long asthey do not grow), but nothing can be added. To add new netCDF dimensions,
variables, or attributes you must enter define mode, by calling NF90_REDEF. In define mode, call
NF90_DEF DI Mto define new dimensions, NFO0_DEF_VAR to define new variables, and
NF90_PUT_ATT to assign new attributes to variables or enlarge old attributes.

You can |leave define mode and reenter data mode, checking all the new definitions for consistency
and committing the changes to disk, by calling NF90_ENDDEF. If you do not wish to reenter data
mode, just call NF90_CLOSE, which will have the effect of first calling NFOO_ENDDEF.

Until the NFOO_ENDDEF call, you may back out of all the redefinitions made in define mode and
restore the previous state of the netCDF dataset by calling NF90_ABORT. You may also use the
NF90_ABORT call to restore the netCDF dataset to a consistent state if the call to NF90 _ENDDEF
fails. If you have called NF90_CLOSE from definition mode and the implied call to NF90_ENDDEF
fails, NF90_ABORT will automatically be called to close the netCDF dataset and leave it in its pre-
vious consistent state (before you entered define mode).

At most one process should have a netCDF dataset open for writing at one time. Thelibrary is
designed to provide limited support for multiple concurrent readers with one writer, via disci-
plined use of the NF90_SYNC function and the NFOO_SHARE flag. If awriter makes changesin
define mode, such as the addition of new variables, dimensions, or attributes, some means exter-
nal to the library is necessary to prevent readers from making concurrent accesses and to inform

28

readersto call NF90_SYNC before the next access.

4.6 Error Handling

The netCDF library provides the facilities needed to handle errorsin aflexible way. Each netCDF
function returns an integer status value. If the returned status value indicates an error, you may
handleit in any way desired, from printing an associated error message and exiting to ignoring the
error indication and proceeding (not recommended!). For ssimplicity, the examplesin this guide
check the error status and call a separate function to handle any errors.

The NF9O_STRERROR function is available to convert areturned integer error statusinto an error
message string.

Occasionaly, low-level 1/0O errors may occur in alayer below the netCDF library. For example, if
awrite operation causes you to exceed disk quotas or to attempt to write to adevice that is no
longer available, you may get an error from alayer below the netCDF library, but the resulting
write error will till be reflected in the returned status value.

4.7 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN interfaces
differ, depending on the operating system, the available compilers, and where the netCDF library
and includefiles areinstalled. Neverthel ess, we provide here examples of how to compile and link
aprogram that uses the netCDF library on a Unix platform, so that you can adjust these examples
to fit your installation.

Every Fortran 90 procedure or module which references netCDF constants or procedures must
have access to the module information created when the netCDF module was compiled. The suf-
fix for thisfile depends on the compiler, but is often . MoD. Most Fortran 90 compilers do not allow
you to specify an alternative location for thisfile as you might the location of external libraries.
The simplest solution, therefore, isto create a symbolic link from the directory in which your
code resides to the location of the pre-compiled netCDF module. For example:

In -s /usr/local/netcdf/src/f90/ netcdf.nod .
You may then compile source files which reference netCDF constants or procedures.
f90 -c¢ mynodul e. f90

Unless the netCDF library isinstalled in a standard directory where the linker always looks, you
must use the - L and -1 optionsto link an object file that uses the netCDF library. For example:

f90 -0 myprogram nyprogramo -L/usr/local/netcdf/lib -Inetcdf

Chapter 5: Datasets 29

5 Datasets

This chapter presents the interfaces of the netCDF functions that deal with anetCDF dataset or
the whole netCDF library.

A netCDF dataset that has not yet been opened can only be referred to by its dataset name. Once a
netCDF dataset is opened, it isreferred to by anetCDF 1D, which is a small nonnegative integer
returned when you create or open the dataset. A netCDF ID is much like afile descriptor in C or a
logical unit number in FORTRAN. In any single program, the netCDF IDs of distinct open
netCDF datasets are distinct. A single netCDF dataset may be opened multiple times and will then
have multiple distinct netCDF IDs; however at most one of the open instances of asingle netCDF
dataset should permit writing. When an open netCDF dataset is closed, the ID is no longer associ-
ated with a netCDF dataset.

Functions that deal with the netCDF library include:

» Get version of library.
» Get error message corresponding to areturned error code.

The operations supported on a netCDF dataset as a single object are:

» Create, given dataset name and whether to overwrite or not.

* Open for access, given dataset name and read or write intent.

» Put into define mode, to add dimensions, variables, or attributes.

» Takeout of define mode, checking consistency of additions.

» Close, writing to disk if required.

» Inquire about the number of dimensions, number of variables, number of global attributes, and
ID of the unlimited dimension, if any.

» Synchronizeto disk to make sureit is current.

» Set and unset nofill mode for optimized sequential writes.

After asummary of conventions used in describing the netCDF interfaces, the rest of this chapter
presents a detailed description of the interfaces for these operations.

5.1 NetCDF Library Interface Descriptions
Each interface description for a particular netCDF function in this and later chapters contains:

* adescription of the purpose of the function;

» a Fortran 90 interface block that presents the type and order of the formal parameters to the
function;

» adescription of each formal parameter in the Fortran 90 interface;

» alist of possible error conditions; and

» anexample of aFortran 90 program fragment calling the netCDF function (and perhaps other
netCDF functions).

30

The examples follow a simple convention for error handling, always checking the error status
returned from each netCDF function call and calling a HANDLE_ERR subroutine in case an error
was detected. For an example of such a subroutine, see Section 5.2 “Get error message corre-
sponding to error status: NFOO_ STRERROR,” page 30.

5.2 Get error message corresponding to error status: NF90 STRERRCR

The function NFOO_STRERROR returns a static reference to an error message string corresponding
to an integer netCDF error status or to a system error number, presumably returned by a previous
call to some other netCDF function. The list of netCDF error status codesis availablein the
appropriate include file for each language binding.

Usage

function nf90 strerror(ncerr)

integer, intent(in) :: ncerr
character(len = 80) :: nf90_strerror
ncerr An error status that might have been returned from a previous call to some

netCDF function.
Errors

If you provide an invalid integer error status that does not correspond to any netCDF error mes-
sage or to any system error message (as understood by the system st rer r or function),
NF90_STRERRCR returns a string indicating that there is no such error status.

Example

Hereis an example of asimple error handling subroutine that uses NF90_STRERROR to print the
error message corresponding to the netCDF error status returned from any netCDF function call
and then exit:

subrouti ne handl e_err(status)
integer, intent (in) :: status

if(status /= nf90_noerr) then
print *, trim(nf90_strerror(status))
stop “ St opped”
end if
end subroutine handle_err

5.3 Get netCDF library version: NFOO_| NQ LI BVERS

The function NFO0_I NQ_LI BVERS returns a string identifying the version of the netCDF library,
and when it was built.

Chapter 5: Datasets 31

Usage
function nf90_inqg_libvers()

character(len = 80) :: nf90_inqg_libvers
Errors

This function takes no arguments, and returns no error status.
Example

Hereis an example using NF90_I NQ_LI BVERS to print the version of the netCDF library with
which the program is linked:

print *, trim(nf90_ing_libvers())

54 Createa NetCDF dataset: NF90 CREATE

Thisfunction creates anew netCDF dataset, returning a netCDF ID that can subsequently be used
to refer to the netCDF dataset in other netCDF function calls. The new netCDF dataset is opened
for write access and placed in define mode, ready for you to add dimensions, variables, and
attributes.

A creation mode flag specifies whether to overwrite any existing dataset with the same name and
whether access to the dataset is shared.

Usage
function nf90 create(path, cnode, ncid
character (len = *), intent(in) :: path
i nteger, intent(in) :: cnode
i nteger, optional, intent(in) :: initialsize
i nteger, optional, i ntent (inout) :: chunksize
i nteger, intent(out) :: ncid
i nt eger .. nf90 create

pat h The file name of the new netCDF dataset.

32

cnode The creation mode. A zero value (or NFOO_CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buffer
and cache accesses for efficiency.
Otherwise, the creation mode is NFO0 _NOCLOBBER, NFO90 SHARE, Or
| OR(NF90_NOCLOBBER, NF90_SHARE) . Setting the NFO0_NOCLOBBER flag
means you do not want to clobber (overwrite) an existing dataset; an error
(NF90_EEXI ST) isreturned if the specified dataset already exists. The
NF90_SHARE flag is appropriate when one process may be writing the dataset
and one or more other processes reading the dataset concurrently; it means
that dataset accesses are not buffered and caching is limited. Since the buff-
ering scheme is optimized for sequential access, programs that do not access
data sequentially may see some performance improvement by setting the
NF_SHARE flag.

nci d Returned netCDF ID.
The following optional arguments allow additional performance tuning.

initialsize Theinitia size of thefile (in bytes) at creation time. A value of 0 causes the
file size to be computed when nf 90_enddef iscalled.

chunksi ze Controls a space versus time trade-off, memory allocated in the netcdf
library versus number of system calls. Because of internal requirements, the
value may not be set to exactly the value requested. The actual value chosen
is returned.
The library chooses a system-dependent default value if
NF90_SI ZEH NT_DEFAULT is supplied asinput. If the "preferred I/O block
size" isavailable from the st at () system call as member st _bl ksi ze this
valueisused. Lacking that, twice the system pagesize is used. Lacking acall
to discover the system pagesize, the default chunksize is set to 8192 bytes.
The chunksizeis a property of agiven open netcdf descriptor ncid, it isnot a
persistent property of the netcdf dataset.

Errors

If no errors were detected, NFOO_CREATE returns the value NF90_NCERR. Possible causes of errors
include:

* Passing adataset name that includes a directory that does not exist.

» Specifying a dataset name of afile that exists and also specifying NF90_NOCLOBBER

» Specifying a meaningless value for the creation mode.

» Attempting to create a netCDF dataset in adirectory where you don’'t have permission to cre-
atefiles.

Example

In this example we create a netCDF dataset named f oo. nc; we want the dataset to be created in
the current directory only if a dataset with that name does not already exist:

Chapter 5: Datasets

use net cdf
inmplicit none
integer :: ncid, status

33

status = nf90 _create(path = “foo.nc”, cnmode = nf90_nocl obber, ncid = ncid)

if (status /= nf90 _noerr) call handle_err(status)

55 Open aNetCDF Dataset for Access. NF90 OPEN

The function NF90_OPEN opens an existing netCDF dataset for access in data mode.

Usage
function nf90_open(path, node, ncid, chunksize)
character (len = *), intent(in) :: path
i nteger, intent(in) :: node
i nteger, intent(out) :: ncid
i nteger, optional, intent(inout) :: chunksize
i nt eger :: nf90_open
pat h File name for netCDF dataset to be opened.
nmode A zero value (or NF90_NOWRI TE) specifies the default behavior: open the

dataset with read-only access, buffering and caching accesses for efficiency

Otherwise, the creation mode iSNF90_WRI TE, NF90_ SHARE, oOf
| OR(NF90_WRI TE, NF90_SHARE) . Setting the NFo0_WRI TE flag opens the

dataset with read-write access. (“Writing” means any kind of change to the

dataset, including appending or changing data, adding or renaming dimen-

sions, variables, and attributes, or deleting attributes.) The NF_SHARE flag is

appropriate when one process may be writing the dataset and one or more
other processes reading the dataset concurrently; it means that dataset

accesses are not buffered and caching is limited. Since the buffering scheme
isoptimized for sequential access, programs that do not access data sequen-

tially may see some performance improvement by setting the NF90_SHARE
flag.
nci d Returned netCDF ID.

The following optional argument allows additional performance tuning.

34

chunksi ze Controls a space versus time trade-off, memory allocated in the netcdf
library versus number of system calls. Because of internal requirements, the
value may not be set to exactly the value requested. The actual value chosen
is returned.
The library chooses a system-dependent default value if
NF9O0_SI ZEH NT_DEFAULT is supplied asinput. If the "preferred I/O block
size" isavailable from the st at () system call as member st _bl ksi ze this
valueisused. Lacking that, twice the system pagesize is used. Lacking acall
to discover the system pagesize, the default chunksize is set to 8192 bytes.
The chunksizeis a property of agiven open netcdf descriptor ncid, it isnot a
persistent property of the netcdf dataset.

Errors

NF90_OPEN returns the value NF90_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* The specified netCDF dataset does not exist.
* A meaningless mode was specified.

Example

Here is an example using NFO0_OPEN to open an existing netCDF dataset named f oo. nc for read-
only, non-shared access:

use net cdf

inmplicit none

integer :: ncid, status

status = nf90 _open(path = “foo.nc”, cnode = nf90_nowite, ncid = ncid)

if (status /= nf90_noerr) call handl e_err(status)

5.6 Put Open NetCDF Dataset into Define Mode: NFOO_ REDEF

The function NF90_REDEF puts an open netCDF dataset into define mode, so dimensions, vari-
ables, and attributes can be added or renamed and attributes can be del eted.

Usage
function nf90_redef(ncid)
integer, intent(in) :: ncid
i nt eger .. nf90_redef

ncid NetCDF ID, from a previous call to NF9O_OPEN Or NF90_ CREATE.

Chapter 5: Datasets 35

Errors

NF90_REDEF returns the value NFO0_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

* The specified netCDF dataset is already in define mode.
* The specified netCDF dataset was opened for read-only.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Hereisan example using NFO0_REDEF to open an existing netCDF dataset named f oo. nc and put
it into define mode:

use net cdf
inmplicit none
integer :: ncid, status

status = nf90_open(“foo.nc”, nf90_write, ncid) ! Open dataset
if (status /= nf90_noerr) call handl e_err(status)

status = nf90_redef (ncid) ! Put the file in define node
if (status /= nf90_noerr) call handl e_err(status)

5.7 LeaveDefine Mode: NFO9O_ENDDEF

The function NF90_ENDDEF takes an open netCDF dataset out of define mode. The changes made
to the netCDF dataset while it was in define mode are checked and committed to disk if no prob-
lems occurred. Non-record variables may be initialized to a*“fill value” aswell (see Section 5.12

“Set Fill Mode for Writes: NF90_SET_FI LL,” page 41). The netCDF dataset is then placed in

data mode, so variable data can be read or written.

This call may involve copying data under some circumstances. See Chapter 9 “NetCDF File
Structure and Performance,” page 83, for a more extensive discussion.

Usage

function nf90 _enddef (ncid, h_mnfree, v_align, v_nmnfree, r_align)
i nteger, intent(in) :: ncid
i nteger, optional, intent(in) :: h_mnfree, v_align, v_nmnfree, r_align
i nt eger .. nf90_enddef

nci d NetCDF ID, from a previous call to NFOO_OPEN or NF90_CREATE.

36

The following arguments allow additional performance tuning. Note: these arguments expose
internals of the netcdf version 1 file format, and may not be available in future netcdf imple-
mentations.

The current netcdf file format has three sections: the "header” section, the data section for fixed
size variables, and the data section for variables which have an unlimited dimension (record
variables). The header begins at the beginning of thefile. The index (offset) of the beginning of
the other two sections is contained in the header. Typically, there is no space between the sec-
tions. This causes copying overhead to accrue if one wishes to change the size of the sections,
as may happen when changing the names of things, text attribute values, adding attributes or
adding variables. Also, for buffered i/o, there may be advantages to aligning sectionsin certain

ways.
The following parameters allow one to control costs of future calls to

nf 90_r edef or nf 90_enddef by requesting that some space be available at
the end of the section. The default value for both argumentsis 0.

h_m nfree Size of the pad (in bytes) at the end of the "header" section.
v_m nfree Size of the pad (in bytes) at the end of the data section for fixed size vari-
ables.

The align parameters allow one to set the alignment of the beginning of the
corresponding sections. The beginning of the section is rounded up to an
index which isamultiple of the align parameter. The flag value

NF90_ALI GN_CHUNK tells the library to use the chunksize (see above) asthe
align parameter. The default value for both argumentsis 4 bytes.

v_align The alignment of the beginning of the data section for fixed size variables.
r_align The alignment of the beginning of the data section for variables which have
an unlimited dimension (record variables).

Errors

NF90_ ENDDEF returns the value NF90_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

* The specified netCDF dataset is not in define mode.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_ENDDEF to finish the definitions of a new netCDF dataset named
f 0o. nc and put it into data mode:

use net cdf
inmplicit none
integer :: ncid, status

Chapter 5: Datasets 37

status = nf90 _create(“foo.nc”, nf90_nocl obber, ncid)
if (status /= nf90 _noerr) call handle_err(status)

I create dinensions, variables, attributes
status = nf90_enddef (nci d)
if (status /= nf90 _noerr) call handle_err(status)

5.8 Closean Open NetCDF Dataset: NFOO CLOSE

The function NF90_CLCSE closes an open netCDF dataset. If the dataset isin define mode,
NF90_ENDDEF will be called before closing. (In this case, if NF90_ENDDEF returns an error,
NF90_ABORT will automatically be called to restore the dataset to the consistent state before define
mode was last entered.) After an open netCDF dataset is closed, its netCDF 1D may be reassigned
to the next netCDF dataset that is opened or created.

Usage
function nf90 _cl ose(ncid)

integer, intent(in) :: ncid

i nt eger ;. nf90 _cl ose

nci d netCDF ID, from a previous call to NF90_OPEN Oor NFOO_ CREATE.
Errors

NF90_CLOSE returns the value NF90_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

» Define mode was entered and the automatic call made to NF90_ENDDEF failed.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_CLOSE to finish the definitions of a new netCDF dataset named
f 0o. nc and release its netCDF ID:

use net cdf
inmplicit none
integer :: ncid, status

status = nf90 create(“foo.nc”, nf90_nocl obber, ncid)
if (status /= nf90_noerr) call handle_err(status)

I create dinensions, variables, attributes
status = nf90 _cl ose(ncid)
if (status /= nf90_noerr) call handle_err(status)

38

5.9 Inquireabout an Open NetCDF Dataset: NF90 Inquire

The NF90_I nqui r e subroutine returns information about an open netCDF dataset, given its
netCDF ID. The subroutine can be called from either define mode or data mode, and returns val-
uesfor any or al of the following: the number of dimensions, the number of variables, the num-
ber of global attributes, and the dimension ID of the dimension defined with unlimited length, if
any.

No I/O is performed when NF90_I nqui r e is caled, since the required information is available in
memory for each open netCDF dataset.

Usage

function nf90_Inquire(ncid, nDi nmensions, nVariables, nAttributes, &
unl i mtedDi m d)

i nt eger, intent(in) :: ncid
i nteger, optional, intent(out) :: nDinmensions, nVariables, nAttributes, &
unlimtedb md
i nt eger :: nf90_Inquire
ncid NetCDF ID, from aprevious call to NF90_OPEN or NF90_CREATE.

nDi nensi ons Returned number of dimensions defined for this netCDF dataset.
nVari abl es Returned number of variables defined for this netCDF dataset.
nAttributes Returned number of global attributes defined for this netCDF dataset.

unl i mi t ed- Returned ID of the unlimited dimension, if there is one for this netCDF
OmD dataset. If no unlimited length dimension has been defined, -1 is returned.
Errors

Function NF90_I nqui r e returns the value NF90_NCERR if no errors occurred. Otherwise, the
returned status indicates an error. Possible causes of errorsinclude:

* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereisan example using Nf 90_I nqui r e to find out about a netCDF dataset named f oo. nc:
use net cdf
inmplicit none
integer :: ncid, status, nDins, nVars, nd obal Atts, unlinDimD

status = nf90 open(“foo.nc”, nf90 nowite, ncid)
if (status /= nf90_noerr) call handle_err(status)

status = Nf90_Inquire(ncid, nDins, nVars, nd obal Atts, unlindimd)

Chapter 5: Datasets 39

if (status /= nf90 _noerr) call handle_err(status)

status = Nf90_I nquire(ncid, nbDinmensions = nDins, &
unlimtedDim D = unlindi m d)

if (status /= nf90 _noerr) call handle_err(status)

5.10 Synchronize an Open NetCDF Dataset to Disk: NFOO_SYNC

The function NF90_SYNC offers away to synchronize the disk copy of a netCDF dataset with in-
memory buffers. There are two reasons you might want to synchronize after writes:

* To minimize datalossin case of abnormal termination, or

» To make data available to other processes for reading immediately after it is written. But note
that a process that already had the dataset open for reading would not see the number of
records increase when the writing process calls NF90_SYNC; to accomplish this, the reading
process must call NF90_SYNC.

This function is backward-compatible with previous versions of the netCDF library. The intent
was to allow sharing of a netCDF dataset among multiple readers and one writer, by having the
writer call NF90_SYNC after writing and the readers call NF90_SYNC before each read. For awriter,
this flushes buffersto disk. For areader, it makes sure that the next read will be from disk rather
than from previously cached buffers, so that the reader will see changes made by the writing pro-
cess (e.g., the number of records written) without having to close and reopen the dataset. If you
are only accessing a small amount of data, it can be expensive in computer resources to always
synchronize to disk after every write, since you are giving up the benefits of buffering.

An easier way to accomplish sharing (and what is now recommended) is to have the writer and
readers open the dataset with the NF90_SHARE flag, and then it will not be necessary to call
NF90_SYNC at all. However, the NF90_SYNC function still provides finer granularity than the
NF90_SHARE flag, if only afew netCDF accesses need to be synchronized among processes.

It isimportant to note that changes to the ancillary data, such as attribute values, are not propa-
gated automatically by use of the NF90_SHARE flag. Use of the NF90_SYNC function is still
required for this purpose.

Sharing datasets when the writer enters define mode to change the data schema requires extra
care. In previous releases, after the writer left define mode, the readers were left looking at an old
copy of the dataset, since the changes were made to a new copy. The only way readers could see
the changes was by closing and reopening the dataset. Now the changes are made in place, but
readers have no knowledge that their internal tables are now inconsistent with the new dataset
schema. If netCDF datasets are shared across redefinition, some mechanism external to the
netCDF library must be provided that prevents access by readers during redefinition and causes
the readers to call NF90_SYNC before any subsequent access.

When calling NF90_SYNC, the netCDF dataset must be in data mode. A netCDF dataset in define
mode is synchronized to disk only when NF90_ENDDEF is called. A processthat isreading a
netCDF dataset that another process is writing may call NF90_SYNC to get updated with the
changes made to the data by the writing process (e.g., the number of records written), without

40

having to close and reopen the dataset.

Datais automatically synchronized to disk when anetCDF dataset is closed, or whenever you
|eave define mode.

Usage
function nf90_sync(ncid)

integer, intent(in) :: ncid

i nt eger :: nf90_sync

ncid NetCDF ID, from aprevious call to NFOO_OPEN Oor NF90 _ CREATE.
Errors

NF90_SYNC returns the value NF90_NCOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* ThenetCDF dataset is in define mode.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_SYNC to synchronize the disk writes of a netCDF dataset named
foo. nc:

use net cdf
inmplicit none
integer :: ncid, status

status = nf90_open(“foo.nc”, nf90_wite, ncid)
if (status /= nf90_noerr) call handl e_err(status)

I wite data or change attributes

status = NF90_SYNC(nci d)
if (status /= nf90_noerr) call handl e_err(status)

5.11 Back Out of Recent Definitions: NFOO _ABORT

You no longer need to call thisfunction, sinceit is called automatically by NF90_CLOSE in case the
dataset isin define mode and something goes wrong with committing the changes. The function
NF90_ABORT just closes the netCDF dataset, if not in define mode. If the dataset is being created
and is still in define mode, the dataset is deleted. If define mode was entered by acall to
NF90_REDEF, the netCDF dataset is restored to its state before definition mode was entered and the
dataset is closed.

Chapter 5: Datasets 41

Usage
function nf90_abort (ncid)

integer, intent(in) :: ncid

i nt eger :: nf90_abort

ncid NetCDF ID, from aprevious call to NF90_OPEN or NF90_CREATE.
Errors

NF90_ABORT returns the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* When called from define mode while creating a netCDF dataset, deletion of the dataset failed.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NFO0_ABORT to back out of redefinitions of a dataset named f oo. nc:

use net cdf
inmplicit none
integer :: ncid, status, LatDim D

status = nf90_open(“foo.nc”, nf90_wite, ncid)
if (status /= nf90 _noerr) call handle_err(status)

status = nf90_redef(ncid)
if (status /= nf90 _noerr) call handle_err(status)

status = nf90 _def _dimncid, “Lat”, 18, LatDi m D)

if (status /= nf90 _noerr) then ! Dinmension definition failed
call handl e_err (status)
status = nf90_abort(ncid) ! Abort redefinitions
if (status /= nf90 _noerr) call handle_err(status)

end if

5.12 Set Fill Mode for Writes: NF9O_SET FI LL

This function isintended for advanced usage, to optimize writes under some circumstances
described below. The function NF90_SET_FI LL sets the fill mode for a netCDF dataset open for
writing and returns the current fill mode in areturn parameter. The fill mode can be specified as
either NFOO_FI LL or NF9O_NOFI LL. The default behavior corresponding to NFOO_FI LL isthat data
is pre-filled with fill values, that isfill values are written when you create non-record variables or
when you write a value beyond data that has not yet been written. This makes it possible to detect
attempts to read data before it was written. See Section 7.8 “Fill Values,” page 67, for more infor-
mation on the use of fill values. See Section 8.1 “Attribute Conventions,” page 69, for information
about how to define your own fill values.

42

The behavior corresponding to NFO0_NOFI LL overrides the default behavior of prefilling datawith
fill values. This can be used to enhance performance, because it avoids the duplicate writes that
occur when the netCDF library writes fill values that are later overwritten with data.

A value indicating which mode the netCDF dataset was already inisreturned. You can use this
value to temporarily change the fill mode of an open netCDF dataset and then restore it to the pre-
vious mode.

After you turn on NF90_NOFI LL mode for an open netCDF dataset, you must be certain to write
valid datain all the positions that will later be read. Note that nofill mode is only atransient prop-
erty of anetCDF dataset open for writing: if you close and reopen the dataset, it will revert to the
default behavior. You can also revert to the default behavior by calling NFOO_SET_FI LL againto
explicitly set the fill modeto NFOO_FI LL.

There are three situations where it is advantageous to set nofill mode:

1. Creating and initializing anetCDF dataset. In this case, you should set nofill mode before call-
ing NF90_ENDDEF and then write completely all non-record variables and the initial records of
all the record variables you want to initialize.

2. Extending an existing record-oriented netCDF dataset. Set nofill mode after opening the
dataset for writing, then append the additional records to the dataset completely, leaving no
intervening unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF dataset. Set nofill
mode before calling NFO0_ENDDEF then write all the new variables compl etely.

If the netCDF dataset has an unlimited dimension and the last record was written while in nofill
mode, then the dataset may be shorter than if nofill mode was not set, but thiswill be completely
transparent if you access the data only through the netCDF interfaces.

The use of this feature may not be available (or even needed) in future releases. Programmers are
cautioned against heavy reliance upon this feature.

Usage
function nf90 _set fill(ncid, fillnode, old_node)
integer, intent(in) :: ncid, fillnode
i nteger, intent(out) :: old_node
i nt eger .. nfo0_set fill
nci d NetCDF ID, from a previous call to NFOO_OPEN or NF90_ CREATE.
fill mode Desired fill mode for the dataset, either NFOO _NOFI LL or NF9O_FI LL.
ol d_node Returned current fill mode of the dataset before this call, either

NF90 NOFI LL or NFOO_FI LL.
Errors

NF90_SET FI LL returnsthe value NF9O_NOERR if no errors occurred. Otherwise, the returned sta-

Chapter 5: Datasets 43

tus indicates an error. Possible causes of errorsinclude:

* The specified netCDF 1D does not refer to an open netCDF dataset.
» The specified netCDF ID refersto a dataset open for read-only access.
* Thefill mode argument is neither NFOO_NOFI LL nor NFQO_FI LL.

Example

Hereis an example using NFO0_SET_FI LL to set nofill mode for subsequent writes of a netCDF
dataset named f oo. nc:

use net cdf
inmplicit none
integer :: ncid, status, ol dwbde

status = nf90_open(“foo.nc”, nf90_wite, ncid)
if (status /= nf90_noerr) call handl e_err(status)

I Wite data with prefilling behavior

status = nf90 _set fill(ncid, nf90_nofill, ol dvbde)
if (status /= nf90_noerr) call handl e_err(status)

I Wite data with no prefilling

Chapter 6: Dimensions 45

6 Dimensions

Dimensions for a netCDF dataset are defined when it is created, while the netCDF dataset isin
define mode. Additional dimensions may be added later by reentering define mode. A netCDF
dimension has aname and alength. At most one dimension in a netCDF dataset can have the
unl i mi t ed length, which means variables using this dimension can grow along this dimension.

Thereis asuggested limit (512) to the number of dimensions that can be defined in asingle
netCDF dataset. The limit isthe value of the const ant NF90_MAX_DI MS. The purpose of the limit
isto make writing generic applications simpler. They need only provide an array of

NF90_MAX_DI Ms dimensions to handle any netCDF dataset. The implementation of the netCDF
library does not enforce this advisory maximum, so it is possible to use more dimensions, if nec-
essary, but netCDF utilities that assume the advisory maximums may not be able to handle the
resulting netCDF datasets.

Ordinarily, the name and length of adimension are fixed when the dimension isfirst defined. The
name may be changed later, but the length of a dimension (other than the unlimited dimension)
cannot be changed without copying all the datato a new netCDF dataset with a redefined dimen-
sion length.

A netCDF dimension in an open netCDF dataset is referred to by a small integer called adimen-
sion ID. In the Fortran 90 interface, dimension IDsare 1, 2, 3, ..., inthe order in which the
dimensions were defined.

Operations supported on dimensions are:

* Create adimension, given its name and length.
* Getadimension ID fromits name.

* Get adimension’s name and length from its ID.
* Renameadimension.

6.1 CreateaDimension: NF90_DEF DI M

The function NF90_DEF_DI Madds a new dimension to an open netCDF dataset in define mode. It
returns (as an argument) adimension ID, given the netCDF ID, the dimension name, and the
dimension length. At most one unlimited length dimension, called the record dimension, may be
defined for each netCDF dataset.

Usage

function nf90_def _di m(ncid, name, len, dimd)
i nteger, intent(in) :: ncid
character (len = *), intent(in) :: nane
i nteger, intent(in) :: len
i nteger, intent(out) :: dimd

i nt eger :: nf90_def _dim

46

nci d NetCDF ID, from a previous call to NFOO_OPEN Or NFO0O_ CREATE.

nane Dimension name. Must begin with an alphabetic character, followed by zero
or more alphanumeric characters including the underscore (‘ _’). Caseissig-
nificant.

I en Length of dimension; that is, number of values for this dimension as an

index to variables that useit. This should be either a positive integer or the
predefined constant NFOO_UNLI M TED.

dimd Returned dimension ID.

Errors

NF90_DEF DI Mreturnsthe value NF90_NCOERRif no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

The netCDF dataset is not in definition mode.

The specified dimension name is the name of another existing dimension.

The specified length is not greater than zero.

The specified length is unlimited, but there is aready an unlimited length dimension defined
for this netCDF dataset.

The specified netCDF ID does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_DEF_DI Mto create adimension named | at of length 18 and a
unlimited dimension named r ec in anew netCDF dataset named f oo. nc:

use net cdf
inmplicit none
integer :: ncid, status, LatDim D, RecordDim D

status = nf90 create(“foo.nc”, nf90_nocl obber, ncid)
if (status /= nf90_noerr) call handle_err(status)

status = nf90 _def dim(ncid, “Lat”, 18, LatDi m D)

if (status /= nf90_noerr) call handl e_err(status)

status = nf90 _def dimncid, “Record”, nf90 unlimted, RecordD nl D)
if (status /= nf90_noerr) call handl e_err(status)

6.2 Get aDimension ID from ItsName: NFOO | NQ DI M D

The function NFOO_I NQ_DI M D returns (as an argument) the ID of a netCDF dimension, given the
name of the dimension. If ndi ns isthe number of dimensions defined for a netCDF dataset, each
dimension has an ID between 1 and ndi ns.

Chapter 6: Dimensions 47

Usage
function nf90_inqg_dimd(ncid, nane, dimnd)
i nt eger, intent(in) :: ncid
character (len = *), intent(in) :: nane
i nt eger, intent(out) :: dimd
i nt eger :: nf90_ing_ dimd
ncid NetCDF ID, from aprevious call to NF90_OPEN or NF90_CREATE.
name Dimension name, a character string beginning with aletter and followed by

any seguence of letters, digits, or underscore (*_') characters. Caseis signif-
icant in dimension names.

dimd Returned dimension ID.

Errors

NF90_| NQ DI M D returns the value NF90_NCOERR if no errors occurred. Otherwise, the returned sta-
tusindicates an error. Possible causes of errors include:

» The name that was specified is not the name of adimension in the netCDF dataset.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Hereisan example using NF90_I NQ DI M D to determine the dimension ID of adimension named
| at , assumed to have been defined previously in an existing netCDF dataset named f oo. nc:

use net cdf
inmplicit none
integer :: ncid, status, LatDim D

status = nf90_open(“foo.nc”, nf90 _nowite, ncid)
if (status /= nf90_noerr) call handl e_err(status)

status = nf90_ing_di nmid(ncid, “Lat”, LatDi m D)

if (status /= nf90_noerr) call handl e_err(status)

6.3 Inquireabout a Dimension: NF90 Inquire Dimension

This function information about a netCDF dimension. Information about a dimension includes
its name and its length. The length for the unlimited dimension, if any, is the number of records
written so far.

Usage

function nf90_Inquire_Dinension(ncid, dimd, name, |en)
i nt eger, intent(in) :: ncid, dimd

48

character (len = *), optional, intent(out) :: nane

i nt eger, optional, intent(out) :: len

i nt eger :: nf90_I nquire_Di nension
nci d NetCDF ID, from a previous call to NFOO_OPEN Or NFO0O_ CREATE.
dimd Dimension ID, for example from a previous call to NF90_I NQ DI M D or

NF90_DEF DI M

nane Returned dimension name. The caller must allocate space for the returned
name. The maximum possible length, in characters, of adimension nameis
given by the predefined constant NFOO_MAX_NAME.

I en Returned length of dimension. For the unlimited dimension, thisis the cur-
rent maximum value used for writing any variables with this dimension, that
is the maximum record number.

Errors

These functions return the value NF90_NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

* Thedimension ID isinvalid for the specified netCDF dataset.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_I NQ DI Mto determine the length of adimension named | at , and
the name and current maximum length of the unlimited dimension for an existing netCDF dataset
named f oo. nc:

use net cdf

inmplicit none

integer :: ncid, status, LatDim D, RecordDi m D
i nteger :: nLats, nRecords

character(len = nf90_max_nane) :: Recor dD mNane

status = nf90_open(“foo.nc”, nf90_nowite, ncid)

if (status /= nf90 _noerr) call handle_err(status)

I Get ID of unlinmted di nension

status = nf90_Inquire(ncid, unlimtedD md = RecordD m D)
if (status /= nf90 _noerr) call handle_err(status)

status = nf90_ing_dimd(ncid, “Lat”, LatDi m D)
if (status /= nf90 _noerr) call handle_err(status)
I How nmany val ues of “lat” are there?
status = nf90_Inquire_Dinension(ncid, LatDim D, |en = nLats)
if (status /= nf90 _noerr) call handle_err(status)
I What is the name of the unlimted di nension, how many records are there?
status = nf90_I nquire_Di nension(ncid, RecordDimD, &
nanme = RecordDi nNarme, |en = Records)

Chapter 6: Dimensions

if (status /= nf90 _noerr) call handle_err(status)

6.4 RenameaDimension: NF90 RENAVE DI M

The function NF90_renames an existing dimension in a netCDF dataset open for writing. If the
new name is longer than the old name, the netCDF dataset must be in define mode. You cannot
rename a dimension to have the same name as another dimension.

Usage
function nf90_renane_di mncid, dinmd, nane)
i nt eger, intent(in) :: ncid
character (len = *), intent(in) :: name
i nt eger, intent(in) :: dimd
i nt eger :: nf90_renanme_dim
ncid NetCDF ID, from a previous call to NFOO_OPEN Or NF90_ CREATE.
dimid Dimension ID, from a previous call to NF90_| NQ DI M D or NF90_DEF_DI M
name New name for the dimension.
Errors

NF90_RENANME DI Mreturns the value NFOO_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errorsinclude:

» Thenew nameis the name of another dimension.

* Thedimension ID isinvalid for the specified netCDF dataset.

* The specified netCDF 1D does not refer to an open netCDF dataset.

* Thenew nameislonger than the old name and the netCDF dataset is not in define mode.

Example

Hereis an example using NF90_RENAME DI Mto rename the dimension | at tol ati t ude inan
existing netCDF dataset named f oo. nc:

use net cdf
inmplicit none
integer :: ncid, status, LatDim D

status = nf90_open(“foo.nc”, nf90_wite, ncid)
if (status /= nf90 _noerr) call handle_err(status)

I Put in define node so we can renane the di nension
status = nf90_redef(ncid)

if (status /= nf90 _noerr) call handle_err(status)

I Get the dinension ID for “Lat”...

status = nf90_ing_dimd(ncid, “Lat”, LatDi m D)

50

if (status /= nf90 _noerr) cal

handl e_err (st at us)

I ... and change the nane to “Latitude”

status = nf90_renane_di m nci d,
if (status /= nf90 _noerr) cal

I Leave define node

status = nf90_enddef (nci d)

if (status /= nf90 _noerr) cal

LatDim D, “Latitude”)
handl e_err (st at us)

handl e_err (st at us)

Chapter 7: Variables 51

7 Variables

Variables for a netCDF dataset are defined when the dataset is created, while the netCDF dataset
isin define mode. Other variables may be added later by reentering define mode. A netCDF vari-
able has a name, atype, and a shape, which are specified when it is defined. A variable may also
have values, which are established later in data mode.

Ordinarily, the name, type, and shape are fixed when the variable is first defined. The name may
be changed, but the type and shape of a variable cannot be changed. However, a variable defined
in terms of the unlimited dimension can grow without bound in that dimension.

A netCDF variable in an open netCDF dataset is referred to by a small integer called avariable
ID.

Variable IDs reflect the order in which variables were defined within a netCDF dataset. Variable
IDsarel, 2, 3, ..., intheorder in which the variables were defined. A function is available for
getting the variable ID from the variable name and vice-versa.

Attributes (see Chapter 8 “Attributes,” page 69) may be associated with avariable to specify such
properties as units.

Operations supported on variables are:

Create avariable, given its name, datatype, and shape.

Get avariable ID from its name.

Get avariable's name, data type, shape, and number of attributes from itsID.

Put a data value into avariable, given variable ID, indices, and value.

Put an array of valuesinto avariable, given variable ID, corner indices, edge lengths, and a

block of values.

* Put asubsampled or mapped array-section of valuesinto avariable, given variable ID, corner
indices, edge lengths, stride vector, index mapping vector, and a block of values.

* Get adatavaue from avariable, given variable ID and indices.

» Get an array of values from avariable, given variable 1D, corner indices, and edge lengths.

» Get asubsampled or mapped array-section of valuesfrom avariable, given variable ID, corner
indices, edge lengths, stride vector, and index mapping vector.

* Renameavariable.

7.1 Language Types Corresponding to NetCDF External Data Types

Thefollowing table gives the netCDF external datatypes and the corresponding type constants for
defining variables in the Fortran 90 interface:

52

netCDF/CDL Data Fortran 90 API Bits
Type Mnemonic
byt e NF90_BYTE 8
char NF90_ CHAR 8
short NF90_ SHORT 16
i nt NF90_I NT 32
fl oat NF90_FLOAT 32
doubl e NF90_DOUBLE 64

The first column gives the netCDF external datatype, which is the same as the CDL data type.
The next column gives the corresponding Fortran 90 parameter for use in netCDF functions (the
parameters are defined in the netCDF Fortran 90 module net cdf . f 90). The last column gives the
number of bits used in the external representation of values of the corresponding type.

Note that there are no netCDF types corresponding to 64-bit integers or to characterswider than 8
bitsin the current version of the netCDF library.

7.2 CreateaVariable: NFOO_DEF VAR

The function NF90_DEF_VAR adds a new variable to an open netCDF dataset in define mode. It
returns (as an argument) avariable 1D, given the netCDF 1D, the variable name, the variable type,
the number of dimensions, and alist of the dimension IDs.

Usage
function nf90_def var(ncid, nanme, xtype, dinids, varid)
i nt eger, intent(in) :: ncid
character (len = *), intent(in) :: name
i nt eger, intent(in) :: xtype
integer, dinension(:), intent(in) :: dimds
i nt eger ;. nf90 _def var
ncid NetCDF ID, from aprevious call to NF90_OPEN or NF90_ CREATE.
name Name for this variable. Must begin with an alphabetic character, which is

followed by zero or more al phanumeric characters including the underscore
(‘). Caseissignificant.
xtype The external type for this variable, one of the set of predefined netCDF

external datatypes: NFOO_BYTE, NFOO_CHAR, NF90_SHORT, NF9O_| NT,
NF90_FLOAT, or NFOO_DOUBLE.

Chapter 7: Variables 53

di m ds Dimension ID(s) corresponding to this variable's dimension(s). If the ID of
the unlimited dimension isincluded, it must be last. Optional argument di m
i ds may be avector or, if the variable has only one dimension, ascalar; if
the argument is omitted the netCDF variable is defined as a scalar.

varid Returned variable ID

Errors

NF90_DEF_VAR returns the value NF90 _NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

e ThenetCDF dataset is not in define mode.

» The specified variable name is the name of another existing variable.

* The specified typeisnot avalid netCDF type.

» The specified number of dimensionsis negative or more than the constant
NF90_MAX_VAR DI M8, the maximum number of dimensions permitted for a netCDF variable.

* Oneor more of thedimension IDsin the list of dimensionsisnot avalid dimension ID for the
netCDF dataset.

* The number of variables would exceed the constant NF90_MAX_VARS, the maximum number
of variables permitted in a netCDF dataset.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Hereisan example using NF90_DEF_VARto create a variable named r h of type doubl e with three
dimensions, ti ne, | at, and | on in anew netCDF dataset named f oo. nc:

use net cdf

inmplicit none

integer :: status, ncid

integer :: LonDimd, LatDimd, TinmeDimnd
integer :: RhVarld

status = nf90 _create(“foo.nc”, nf90_NoC obber, ncid)
if(status /= nf90 _NoErr) call handl e_error(status)

I Define the dinmensions

status = nf90_def _dimincid, “lat”, 5, LatDi mnld)

i f(status /= nf90 _NoErr) call handl e_error(status)

status = nf90_def dimncid, “lon”, 10, LonDi m d)

i f(status /= nf90 _NoErr) call handl e_error(status)

status = nf90 _def _dimncid, “time”, nf90_unlimted, TinmeD m d)
i f(status /= nf90 _NoErr) call handl e_error(status)

I Define the variable
status = nf90 _def var(ncid, “rh”, nf90_double, &

(/ LonDimd, LatDim D, TineDim D /), RhVarld)
i f(status /= nf90 _NoErr) call handl e_error(status)

7.3 GetaVariableID from ItsName: NF9O_| NQ VARI D

The function NF90_I NQ VARI Dreturns the ID of a netCDF variable, given its name.

Usage
function nf90_inqg_varid(ncid, nane, varid)
i nt eger, intent(in) :: ncid
character (len = *), intent(in) :: nane
i nteger, intent(out) :: varid
i nt eger :: nf90_inqg_varid
ncid NetCDF ID, from aprevious call to NF9O_OPEN or NF90_CREATE.
nane Variable name for which ID is desired.
varid Returned variable ID.
Errors

NF90_| NQ VARI Dreturnsthe value NFO0_NCOERRif no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

» The specified variable name is not avalid name for a variable in the specified netCDF dataset.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_I NQ VARI Dto find out the ID of avariable named r h in an exist-
ing netCDF dataset named f oo. nc:

use net cdf
inmplicit none
i nteger :: status, ncid, RhVarld

status = nf90 open(“foo.nc”, nf90 NoWite, ncid)
if(status /= nf90 _NoErr) call handl e_err(status)

status = nf90_inqg_varid(ncid, “rh”, RhVarld)
if(status /= nf90 _NoErr) call handl e_err(status)

7.4 Get Information about a Variablefrom ItsID: NF90_Inquire Variable

NF90_I nqui re_Vari abl e returns information about a netCDF variable given its ID. Information

about avariableincludesits name, type, number of dimensions, alist of dimension IDs describing

the shape of the variable, and the number of variable attributes that have been assigned to the vari-
able.

Chapter 7: Variables

Usage
function nf90_In
i nteger,
character (len
i nteger,
i nteger, dinmen
i nteger,
i nt eger
nci d

varid

nanme

xt ype

ndi ns

di m ds

natts

Errors

55

qui re_Variabl e(ncid, varid, nane, xtype, ndins, dimds, nAtts)

intent(in) :: ncid, varid
= *), optional, intent(out) :: nane
optional, intent(out) :: xtype, ndins
sion(*), optional, intent(out) :: dimds
optional, intent(out) :: nAtts

nf 90_I nqui re_Vari abl e

NetCDF ID, from aprevious call to NF90_OPEN or NF90_CREATE.
Variable ID.

Returned variable name. The caller must alocate space for the returned
name. The maximum possible length, in characters, of avariable nameis
given by the predefined constant NFO0O_MAX_NAME.

Returned external type for thisvariable, one of the set of predefined netCDF
external datatypes. The valid netCDF external datatypes are NF9O_BYTE,
NF90_CHAR, NF90_SHORT, NF90_I NT, NFOO_FLQAT, and NFOO_DOUBLE.

Returned number of dimensionsfor thisvariable. For example, 2 indicates a
matrix, 1 indicates a vector, and 0 means the variable is a scalar with no
dimensions.

Returned vector of NDI Ms dimension |Ds corresponding to the variable
dimensions. The caller must allocate enough space for a vector of at least
NDI Vs integers to be returned. The maximum possible number of dimen-
sionsfor avariableis given by the predefined constant NF90_MAX_VAR_DI Vs.

Returned number of variable attributes assigned to this variable. Note that
you can get the number of global attributes by using the NFOO_GLOBAL
pseudo-variable 1D

Function NF90_I nqui re_Vari abl e returnsthe value NFO0_NCERR if no errors occurred. Other-
wise, the returned status indicates an error. Possible causes of errors include;

e ThevariableID

isinvalid for the specified netCDF dataset.

* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereisan example

using NF90_I nqui re_Vari abl e to find out about avariable named r h inan

existing netCDF dataset named f oo. nc:

use net cdf
inmplicit none

56

i nt eger .. status, ncid, &
Rhvarld &
nunDi ms, numAtts

i nteger, dinension(nf90_max_var_dins) :: rhD mds

status = nf90_open(“foo.nc”, nf90_NoWite, ncid)
if(status /= nf90_NoErr) call handl e_error(status)

status = nf90_inqg_varid(ncid, “rh”, RhVarld)

if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_Inquire_Var(ncid, RhVarld, ndinms = nunDinms, natts = numAtts)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_Inquire_Var(ncid, RhVarld, dimds = rhDi mds(:nunDins))
if(status /= nf90_NoErr) call handl e_err(status)

7.5 Writing Data Values: NF90 PUT_VAR

The function NF90_PUT_VAR puts one or more data values into the variable of an open netCDF
dataset that isin data mode. Required inputs are the netCDF ID, the variable 1D, and one or more
data values. Optional inputs may indicate the starting position of the data valuesin the netCDF
variable (argument st ar t), the sampling frequency with which data values are written into the
netCDF variable (argument st r i de), and a mapping between the dimensions of the data array and
the netCDF variable (argument nap). The values to be written are associated with the netCDF
variable by assuming that the first dimension of the netCDF variable varies fastest in the Fortran
90 interface. Data values converted to the external type of the variable, if necessary.

Take care when using the simplest forms of this interface with record variables when you don’'t
specify how many records are to be written. If you try to write all the values of arecord variable
into anetCDF file that has no record data yet (hence has O records), nothing will be written. Sim-
ilarly, if you try to write all of arecord variable but there are more records in the file than you
assume, more data may be written to the file than you supply, which may result in a segmentation
violation.

Usage
function nf90 put _var(ncid, varid, values, start, count, stride, map)
i nteger, intent(in) :: ncid, varid
any valid type, scalar or array of any rank, &
intent(in) :: values
i nteger, dinmension(:), optional, intent(in) :: start, count, stride, nap
i nt eger .. nf90_put _var
ncid NetCDF ID, from a previous call to NFOO_OPEN or NF90_CREATE.

varid Variable ID.

Chapter 7: Variables

val ues

start

count

stride

map

57

The data value(s) to be written. The data may be of any type, and may be a
scalar or an array of any rank.

You cannot put CHARACTER datainto anumeric variable or numeric datainto
atext variable. For numeric data, if the type of data differs from the netCDF
variable type, type conversion will occur. See Section 3.3 “Type Conver-
sion,” page 24, for details.

A vector of integers specifying the index in the variable where the first (or
only) of the data values will be written. The indices arerelativeto 1, so for
example, the first data value of avariable would haveindex (1, 1, .., 1).
The elements of st art correspond, in order, to the variable’s dimensions.
Hence, if the variableisarecord variable, the last index would correspond to
the starting record number for writing the data val ues.

By default, start (:) = 1.

A vector of integers specifying the number of indices selected along each
dimension. To write asingle value, for example, specify count as(1, 1,

... 1) . The elements of count correspond, in order, to the variable's dimen-
sions. Hence, if the variable is arecord variable, the last element of count
corresponds to a count of the number of recordsto write.

By default, count (: nunDi ns) = shape(val ues) and

count (nunDinms + 1:) = 1,wherenunDi ms = si ze(shape(val ues)).

A vector of integers that specifies the sampling interval along each dimen-
sion of the netCDF variable. The elements of the stride vector correspond, in
order, to the netCDF variable’'s dimensions (st ri de(1) givesthe sampling
interval along the most rapidly varying dimension of the netCDF variable).
Sampling intervals are specified in type-independent units of elements (a
value of 1 selects consecutive elements of the netCDF variable along the
corresponding dimension, a value of 2 selects every other element, etc.).

By default, stride(:) = 1.

A vector of integers that specifies the mapping between the dimensions of a
netCDF variable and the in-memory structure of the internal data array. The
elements of the index mapping vector correspond, in order, to the netCDF
variable’'sdimensions (map(1) gives the distance between elements of the
internal array corresponding to the most rapidly varying dimension of the
netCDF variable). Distances between elements are specified in units of ele-
ments.
By default, edgeLengt hs = shape(val ues), and
map = (/ 1, (product(edgeLengths(:i)), &

i =1, size(edgeLengths) - 1) /),
that is, there is no mapping.
Use of Fortran 90 intrinsic functions (including r eshape, t r anspose, and
spr ead) may let you avoid using this argument.

58

Errors

NF90_PUT_VAR returnsthe value NFO0_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

e ThevariableID isinvalid for the specified netCDF dataset.

* Theassumed or specifiedst art, count, andstri de generate anindex whichisout of range.
Note that no error checking is possible on the map vector.

» Oneor more of the specified values are out of the range of values representable by the external
datatype of the variable.

» The specified netCDF isin define mode rather than data mode.

* The specified netCDF 1D does not refer to an open netCDF dataset.

(Asnoted above, another possible source of error isusing thisinterface to write all the values of a
record variable without specifying the number of records. If there are a different number of
records in the file than you assume, the amount of data written may be different from what you
expect!)

Example

Hereis an example using NF90_PUT_VARt0 set the (4, 3, 2) element of the variable named r h to
0. 5 in an existing netCDF dataset named f oo. nc. For simplicity in this example, we assume that
we know that r h isdimensioned with | on, | at, and t i me, SO we want to set the value of r h that
corresponds to the fourth | on value, the third | at value, and the second t i ne value:

use net cdf
inmplicit none
integer :: ncld, rhvarld, status

status = nf90 open(“foo.nc”, nf90 Wite, ncid)

if(status /= nf90 _NoErr) call handl e_err(status)

B

status = nf90_inqg_ varid(ncid, “rh”, rhVarld)

if(status /= nf90 _NoErr) call handl e_err(status)

status = nf90 put _var(ncid, rhVarld, 0.5, start = (/ 4, 3, 2 /))
if(status /= nf90 _NoErr) call handl e_err(status)

In this example we use NF90_PUT_VARto add or change al the values of the variable namedr h to
0. 5 in an existing netCDF dataset named f oo. nc. We assume that we know that r h is dimen-
sioned with | on, I at , and t i me. In this example we query the netCDF file to discover the lengths
of the dimensions, then use the Fortran 90 intrinsic function r eshape to create atemporary array
of data values which is the same shape as the netCDF variable.

use net cdf

inmplicit none

i nt eger :: ncld, rhVvarld, status, &
lonDimM D, latDimd, timeDimd, &

nunmLons, nuniats, nunii nes, &
[
i nteger, dinension(nf90_max_var_dinms) :: dimDs

Chapter 7: Variables 59

status = nf90_open(“foo.nc”, nf90_Wite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)

if(status /= nf90_NoErr) call handl e_err(status)

I How big is the netCDF variable, that is, what are the | engths of
! its constituent di nensions?

status = nf90_Inquire_Variabl e(ncid, rhVvarld, dimds = dimDs)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_I nquire_Di nension(ncid, dim Ds(1), |en = nunLons)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_Inquire_Di nension(ncid, dim Ds(2), |len = nunlLats)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_I nquire_Di nension(ncid, dimDs(3), |en = nunii nes)

if(status /= nf90_NoErr) call handl e_err(status)

I Make a tenporary array the same shape as the net CDF vari abl e.
status = nf90_put_var(ncid, rhVarld, &
reshape(&
(/ (0.5, i =1, nunlons * nunmLats * numlines) /) , &
shape = (/ numions, nuniats, nunilinmes /))
if(status /= nf90_NoErr) call handl e_err(status)

Hereis an example using NF90_PUT_VAR to add or change a section of the variable named r h to
0. 5 in an existing netCDF dataset named f oo. nc. For simplicity in this example, we assume that
we know that r h isdimensioned with | on, | at, and t i me, that there are ten | on values, fivel at
values, and threet i me values, and that we want to replace all the values at the last time.

use net cdf

inmplicit none

i nt eger :: ncld, rhVarld, status

i nteger, paranmeter :: nunmions = 10, nuniats = 5, nuniTinmes = 3
real, dinmension(nunions, numiats) &

r hval ues

status = nf90_open(“foo.nc”, nf90_Wite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)
if(status /= nf90_NoErr) call handl e_err(status)

I Fill in all values at the last tinme
rhvalues(:, :) = 0.5
status = nf90_put_var(ncid, rhVarld, rhval ues, &

start = (/ 1, 1, nunflines /), &
count = (/ numLats, nunions, 1 /))
if(status /= nf90 _NoErr) call handl e_err(status)

Hereis an example of using NF_PUT_VAR to write every other point of a netCDF variable named
rh having dimensions (6, 4).

use net cdf
inmplicit none

60

i nt eger ;. ncld, rhvarld, status
i nteger, paraneter :: numLons = 6, nunlLats = 4
real, dinmension(nunmions, nunLats) &

rhvalues = 0.5

status = nf90_open(“foo.nc”, nf90_Wite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)
if(status /= nf90_NoErr) call handl e_err(status)

' Fill in every other value using an array section

status = nf90_put_var(ncid, rhVarld, rhValues(::2, ::2), &
stride = (/ 2, 21/))

if(status /= nf90_NoErr) call handl e_err(status)

The following map vector shows the default mapping between a 2x3x4 netCDF variable and an
internal array of the same shape:

real, di mension(2, 3, 4):: a ! sane shape as net CDF variabl e
i nteger, dinension(3) comp = (11, 2, 61/)

I net CDF di mension inter-elenent distance

| o e e e e e e

I nmost rapidly varying 1
I internedi ate 2 (= map(1)*2)
I most slowy varying 6 (= map(2)*3)

Using the map vector above obtains the same result as ssmply not passing a map vector at all.

Hereis an example of using nf 90_put _var to write anetCDF variable named r h whose dimen-
sions are the transpose of the Fortran 90 array:

use net cdf

inmplicit none

i nt eger .. ncld, rhVarld, status

i nteger, paraneter .. nunmLons = 6, nunLats = 4
real, dinmension(nunions, nunLats) :: rhVal ues

I net CDF variabl e has di nensi ons (nunmLats, nunions)

status = nf90 open(“foo.nc”, nf90 Wite, ncid)
if(status /= nf90 _NoErr) call handl e_err(status)

status = nf90_inqg_varid(ncid, “rh”, rhVarld)
if(status /= nf90 _NoErr) call handl e_err(status)

IWite transposed val ues: nmap vector would be (/ 1, numLats /) for

! no transposition

status = nf90 put _var(ncid, rhVarld, rhValues, map = (/ nunions, 1 /))
if(status /= nf90 _NoErr) call handl e_err(status)

The same effect can be obtained more simply using Fortran 90 intrinsic functions:

use net cdf

Chapter 7: Variables 61

inmplicit none

i nt eger ;. ncld, rhvarld, status
i nteger, paraneter :: nunmLons = 6, nunLats = 4
real, dimension(nunmions, numLats) :: rhVal ues

I net CDF vari abl e has di nensi ons (nunmiats, numlLons)

status = nf90_open(“foo.nc”, nf90_Wite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_put_var(ncid, rhVarld, transpose(rhVal ues))
if(status /= nf90_NoErr) call handl e_err(status)

7.6 Reading Data Values: NFO90 GET_VAR

The function NF90_GET_VAR gets one or more data values from a netCDF variable of an open
netCDF dataset that isin data mode. Required inputs are the netCDF ID, the variable ID, and a
specification for the data values into which the data will be read. Optional inputs may indicate the
starting position of the data valuesin the netCDF variable (argument st ar t), the sampling fre-
guency with which data values are read from the netCDF variable (argument st r i de), and a map-
ping between the dimensions of the data array and the netCDF variable (argument map). The
values to be read are associated with the netCDF variable by assuming that the first dimension of
the netCDF variable varies fastest in the Fortran 90 interface. Data values are converted from the
external type of the variable, if necessary.

Take care when using the ssmplest forms of this interface with record variables when you don’t
specify how many records are to be read. If you try to read al the values of arecord variableinto
an array but there are more records in the file than you assume, more datawill be read than you
expect, which may cause a segmentation violation.

Usage
function nf90 _get var(ncid, varid, values, start, count, stride, map)
i nt eger, intent(in) :: ncid, varid
any valid type, scalar or array of any rank, &
intent(out) :: values
i nteger, dinension(:), optional, intent(in) :: start, count, stride, map
i nt eger .. nf90_get var
ncid NetCDF ID, from aprevious call to NF9O_OPEN or NF90_CREATE.

varid Variable ID.

62

val ues

start

count

stride

map

The data value(s) to be read. The data may be of any type, and may be a sca-
lar or an array of any rank.

You cannot read CHARACTER data from a numeric variable or numeric data
from atext variable. For numeric data, if the type of data differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “ Type
Conversion,” page 24, for details.

A vector of integers specifying the index in the variable from which the first
(or only) of the data values will beread. Theindices arerelativeto 1, so for
example, the first data value of avariable would haveindex (1, 1, .., 1).
The elements of st art correspond, in order, to the variable’s dimensions.
Hence, if the variableisarecord variable, the last index would correspond to
the starting record number for writing the data val ues.

By default, start (:) = 1.

A vector of integers specifying the number of indices selected along each
dimension. To read asingle value, for example, specify count as(1, 1, ..
1) . The elements of count correspond, in order, to the variable's dimen-
sions. Hence, if the variable is arecord variable, the last element of count
corresponds to a count of the number of recordsto read.

By default, count (: nunDi ns) = shape(val ues) and

count (nunDinms + 1:) = 1,wherenunDi ms = si ze(shape(val ues)).

A vector of integers that specifies the sampling interval along each dimen-
sion of the netCDF variable. The elements of the stride vector correspond, in
order, to the netCDF variable’'s dimensions (st ri de(1) givesthe sampling
interval along the most rapidly varying dimension of the netCDF variable).
Sampling intervals are specified in type-independent units of elements (a
value of 1 selects consecutive elements of the netCDF variable along the
corresponding dimension, a value of 2 selects every other element, etc.).

By default, stride(:) = 1.

A vector of integers that specifies the mapping between the dimensions of a
netCDF variable and the in-memory structure of the internal data array. The
elements of the index mapping vector correspond, in order, to the netCDF
variable’'sdimensions (map(1) gives the distance between elements of the
internal array corresponding to the most rapidly varying dimension of the
netCDF variable). Distances between elements are specified in units of ele-
ments.
By default, edgeLengt hs = shape(val ues), and
map = (/ 1, (product(edgeLengths(:i)), &

i =1, size(edgeLengths) - 1) /),
that is, there is no mapping.
Use of Fortran 90 intrinsic functions (including r eshape, t r anspose, and
spr ead) may let you avoid using this argument.

Chapter 7: Variables 63

Errors

NF90_GET_VAR returnsthe value NFO0_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

e ThevariableID isinvalid for the specified netCDF dataset.

* Theassumed or specifiedstart, count, andstri de generate anindex which isout of
range. Note that no error checking is possible on the map vector.

» Oneor more of the specified values are out of the range of values representabl e by the desired
type.

» The specified netCDF isin define mode rather than data mode.

* The specified netCDF 1D does not refer to an open netCDF dataset.

(As noted above, another possible source of error is using thisinterface to read al the values of a
record variable without specifying the number of records. If there are more recordsin the file than
you assume, more data will be read than you expect!)

Example

Hereis an example using NF90_GET_VARto read the (4, 3, 2) element of the variable named r h
from an existing netCDF dataset named f oo. nc. For simplicity in this example, we assume that
we know that r h isdimensioned with | on, I at, and t i me, SO we want to read the value of r h that
corresponds to the fourth | on value, the third | at value, and the second t i ne value:

use net cdf

inmplicit none

integer :: ncld, rhVarld, status
real :: rhVval ue

status = nf90_open(“foo.nc”, nf90_NoWite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)

if(status /= nf90_NoErr) call handl e_err(status)

status = nf90 _get _var(ncid, rhVarld, rhValue, start = (/ 4, 3, 2 /))
if(status /= nf90_NoErr) call handl e_err(status)

In this example we use NF90_GET_VAR to read all the values of the variable named r h from an
existing netCDF dataset named f oo. nc. We assume that we know that r h is dimensioned with
| on, lat,andti me. In this example we query the netCDF file to discover the lengths of the
dimensions, then allocate a Fortran 90 array the same shape as the netCDF variable.

use net cdf

inmplicit none

i nt eger ;. ncld, rhvarld, &
lonDimM D, latDimd, timeDimd, &
nunmLons, nuniats, nunii nes, &
status

i nteger, dinmension(nf90 _max_var _dins) :: dimDs

real, dimension(:, :, :), allocatable :: rhVal ues

64

status = nf90_open(“foo.nc”, nf90_NoWite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)

if(status /= nf90_NoErr) call handl e_err(status)

I How big is the netCDF variable, that is, what are the | engths of
! its constituent di nensions?

status = nf90_Inquire_Variabl e(ncid, rhVvarld, dimds = dimDs)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_I nquire_Di nension(ncid, dim Ds(1), |en = nunLons)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_Inquire_Di nension(ncid, dim Ds(2), |len = nunlLats)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_I nquire_Di nension(ncid, dimDs(3), |en = nunii nes)
if(status /= nf90_NoErr) call handl e_err(status)

al I ocat e(rhVval ues(nunions, numriats, numli nes))

status = nf90 _get _var(ncid, rhVarld, rhVal ues)
if(status /= nf90_NoErr) call handl e_err(status)

Hereis an example using NFO0_GET_VAR to read a section of the variable named r h from an exist-
ing netCDF dataset named f oo. nc. For simplicity in this example, we assume that we know that
rhisdimensioned with | on, | at, andti me, that there areten | on values, fivel at values, and
threeti me values, and that we want to replace all the values at the last time.

use net cdf

inmplicit none

i nt eger :: ncld, rhVarld, status

i nteger, paranmeter :: nunmions = 10, nunmiats = 5, nuniTinmes = 3
real , dinension(nunLons, nuniats, nuniines) &

r hval ues

status = nf90_open(“foo.nc”, nf90_NoWite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_inqg_varid(ncid, “rh”, rhVarld)

if(status /= nf90_NoErr) call handl e_err(status)

I Read the values at the last time by passing an array section

status = nf90 _get var(ncid, rhVarld, rhvalues(:, :, 3), &
start = (/ 1, 1, nunilines /), &
count = (/ numLats, nunions, 1 /))

if(status /= nf90 _NoErr) call handl e_err(status)

Hereisan example of using NF_GET_VARto read every other point of anetCDF variable named r h
having dimensions (6, 4).

use net cdf

inmplicit none

i nt eger ;. ncld, rhvarld, status

i nteger, paraneter :: numLons = 6, nunlLats = 4

real, dinmension(nunmions, nunLats) &
r hval ues

Chapter 7: Variables

status = nf90_open(“foo.nc”, nf90_NoWite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)
if(status /= nf90_NoErr) call handl e_err(status)

I Read every other value into an array section

status = nf90_get var(ncid, rhVarld, rhValues(::2, ::2) &
stride = (/ 2, 21/))

if(status /= nf90_NoErr) call handl e_err(status)

The following map vector shows the default mapping between a 2x3x4 netCDF variable and an
internal array of the same shape:

real, di mrension(2, 3, 4):: a ! sane shape as net CDF variabl e
i nteger, dinension(3) comp = (/1 1, 2, 61/)

I net CDF di mension inter-elenent distance

| o e e e e e e

I most rapidly varying 1
I internedi ate 2 (= map(1)*2)
I most slowy varying 6 (= map(2)*3)

Using the map vector above obtains the same result as ssimply not passing a map vector at all.

Hereis an example of using nf 90_get _var to read a netCDF variable named r h whose dimen-
sions are the transpose of the Fortran 90 array:

use net cdf

inmplicit none

i nt eger .. ncld, rhVarld, status

i nteger, paraneter :: nunmLons = 6, nunLats = 4
real, dinmension(nunions, nunLats) :: rhVal ues

I net CDF variabl e has di nensi ons (nunLats, nunions)

status = nf90 open(“foo.nc”, nf90 NoWite, ncid)
if(status /= nf90 _NoErr) call handl e_err(status)

status = nf90_inqg_varid(ncid, “rh”, rhVarld)
if(status /= nf90 _NoErr) call handl e_err(status)

I Read transposed val ues: nmap vector would be (/ 1, numLiats /) for

! no transposition

status = nf90 get var(ncid, rhVarld, rhValues, map = (/ nunLons, 1 /))
if(status /= nf90 _NoErr) call handl e_err(status)

The same effect can be obtained more simply, though using more memory, using Fortran 90
intrinsic functions:

use net cdf

inmplicit none

i nt eger :: ncld, rhVarld, status

i nteger, paraneter :: nunions = 6, nuniLats = 4

66

real, dimension(nunmions, numLats) :: rhVal ues
I net CDF vari abl e has di nensi ons (nunmiats, numlLons)
real, dinmension(nunions, numLats) :: tenpVal ues

status = nf90_open(“foo.nc”, nf90_NoWite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_ing_varid(ncid, “rh”, rhVarld)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_get _var(ncid, rhVarld, tenpVal ues))
if(status /= nf90_NoErr) call handl e_err(status)
rhval ues(:, :) = transpose(tenpVal ues)

7.7 Reading and Writing Character String Values

Character strings are not a primitive netCDF external datatype, in part because FORTRAN does
not support the abstraction of variable-length character strings (the FORTRAN LEN function
returns the static length of a character string, not its dynamic length). As aresult, a character
string cannot be written or read as a single object in the netCDF interface. Instead, a character
string must be treated as an array of characters, and array access must be used to read and write
character strings as variable datain netCDF datasets. Furthermore, variable-length strings are not
supported by the netCDF interface except by convention; for example, you may treat a zero byte
asterminating a character string, but you must explicitly specify the length of strings to be read
from and written to netCDF variables.

Character strings as attribute values are easier to use, since the strings are treated as a single unit
for access. However, the value of a character-string attribute is still an array of characters with an
explicit length that must be specified when the attribute is defined.

When you define a variable that will have character-string values, use a character-position dimen-
sion as the most quickly varying dimension for the variable (thefirst dimension for the variable in
Fortran 90). The length of the character-position dimension will be the maximum string length of
any value to be stored in the character-string variable. Space for maximum-length strings will be
allocated in the disk representation of character-string variables whether you use the space or not.
If two or more variables have the same maximum length, the same character-position dimension
may be used in defining the variable shapes.

To write a character-string value into a character-string variable, use either entire variable access
or array access. The latter requires that you specify both a corner and a vector of edge lengths.
The character-position dimension at the corner should be one for Fortran 90. If the length of the
string to be written is n, then the vector of edge lengths will specify n in the character-position
dimension, and one for all the other dimensions. (n, 1, 1, .., 1).

In Fortran 90, fixed-length strings may be written to a netCDF dataset without a terminating char-
acter, to save space. Variable-length strings should follow the C convention of writing strings with
aterminating zero byte so that the intended length of the string can be determined when it is later
read by either C or Fortran 90 programs.

Chapter 7: Variables 67

7.8 Fill Values

What happens when you try to read a value that was never written in an open netCDF dataset?
You might expect that this should aways be an error, and that you should get an error message or
an error status returned. You do get an error if you try to read datafrom a netCDF dataset that is
not open for reading, if the variable ID isinvalid for the specified netCDF dataset, or if the speci-
fied indices are not properly within the range defined by the dimension lengths of the specified
variable. Otherwise, reading a value that was not written returns a special fill value used to fill in
any undefined values when a netCDF variable isfirst written.

You may ignorefill values and use the entire range of anetCDF external datatype, but in this case
you should make sure you write all data values before reading them. If you know you will be writ-
ing all the data before reading it, you can specify that no prefilling of variableswith fill values will

occur by calling writing. This may provide a significant performance gain for netCDF writes.

The variable attribute _Fi | | Val ue may be used to specify thefill value for avariable. There are
default fill values for each type, defined in module net cdf : NF9O_FI LL_CHAR, NFOO_FI LL_| NT1
(same asNF90_FI LL_BYTE), NFOO_FI LL_I NT2 (same as NF90_FI LL_SHORT), NFOO_FI LL_| NT,
NF90_FI LL_REAL (sameasNF90_FI LL_FLOAT), and NFOO_FI LL_DOUBLE

The netCDF byte and character types have different default fill values. The default fill value for
charactersisthe zero byte, a useful value for detecting the end of variable-length C character
strings. If you need afill value for abyte variable, it is recommended that you explicitly define an
appropriate _Fi | | Val ue attribute, as generic utilities such asncdunp will not assume a default fill
value for byte variables.

Type conversion for fill valuesisidentical to type conversion for other values: attempting to con-
vert avalue from one type to another type that can’t represent the value results in arange error.
Such errors may occur on writing or reading values from alarger type (such as double) to a
smaller type (such asfloat), if thefill value for the larger type cannot be represented in the smaller

type.

7.9 Renamea Variable: NF90 RENAME VAR

The function NF90_RENAME VAR changes the name of a netCDF variable in an open netCDF
dataset. If the new nameislonger than the old name, the netCDF dataset must be in define mode.
You cannot rename a variable to have the name of any existing variable.

Usage

function nf90_renanme_var(ncid, varid, newnane)
i nt eger, intent(in) :: ncid, varid
character (len = *), intent(in) :: newnane
i nt eger .. nf90_renane_var

nci d NetCDF ID, from a previous call to NFOO_OPEN Or NF90_ CREATE.

68

varid Variable ID.
newname New name for the specified variable.
Errors

NF90_RENANME_VAR returns the value NF90_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errorsinclude:

* Thenew nameisin use as the name of another variable.
e ThevariableID isinvalid for the specified netCDF dataset.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_RENAME_VAR to rename the variabler h tor el _humin an existing
netCDF dataset named f 0o. nc:

use net cdf
inmplicit none
integer :: ncld, rhVarld, status

status = nf90_open(“foo.nc”, nf90_Wite, ncid)
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_inqg_varid(ncid, “rh”, rhVarld)

if(status /= nf90_NoErr) call handl e_err(status)

status = nf90 redef(ncid) ! Enter define node to change variabl e nane
if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_renane_var(ncid, rhvarld, “rel _huni)

if(status /= nf90_NoErr) call handl e_err(status)

status = nf90_enddef(ncid) ! Leave define node

if(status /= nf90_NoErr) call handl e_err(status)

Chapter 8: Attributes 69

8 Attributes

Attributes may be associated with each netCDF variable to specify such properties as units, spe-
cial values, maximum and minimum valid values, scaling factors, and offsets. Attributes for a
netCDF dataset are defined when the dataset isfirst created, while the netCDF dataset isin define
mode. Additional attributes may be added later by reentering define mode. A netCDF attribute has
anetCDF variableto which it isassigned, a name, atype, alength, and a sequence of one or more
values. An attribute is designated by its variable ID and name. When an attribute name is not
known, it may be designated by its variable ID and number in order to determine its name, using
the function NF90_I NQ ATTNAME.

The attributes associated with avariable are typically defined immediately after the variable is
created, while still in define mode. The datatype, length, and value of an attribute may be changed
even when in data mode, aslong as the changed attribute requires no more space than the attribute
asoriginally defined.

It is also possible to have attributes that are not associated with any variable. These are called glo-
bal attributes and are identified by using NFO0_GLOBAL as a variable pseudo-1D. Global attributes
are usually related to the netCDF dataset as awhole and may be used for purposes such as provid-
ing atitle or processing history for anetCDF dataset.

Operations supported on attributes are:

Create an attribute, given its variable 1D, name, data type, length, and value.
Get attribute’s data type and length from its variable ID and name.

Get attribute’s value from its variable ID and name.

Copy attribute from one netCDF variable to another.

Get name of attribute from its number.

Rename an attribute.

Delete an attribute.

8.1 Attribute Conventions

Names commencing with underscore (‘ _’) are reserved for use by the netCDF library. Most
generic applications that process netCDF datasets assume standard attribute conventionsand it is
strongly recommended that these be followed unless there are good reasons for not doing so.
Below we list the names and meanings of recommended standard attributes that have proven use-
ful. Note that some of these (e.g. uni t s, val i d_r ange, scal e_f act or) assume numeric dataand
should not be used with character data.

70

units

[ong_nane

valid nin
val i d_max

val i d_range

scal e_factor

A character string that specifies the units used for the variable’'s data. Uni-
data has developed afreely-available library of routines to convert
between character string and binary forms of unit specifications and to per-
form various useful operations on the binary forms. Thislibrary isused in
some netCDF applications. Using the recommended units syntax permits
data represented in conformable units to be automatically converted to
common units for arithmetic operations. See Appendix A “Units,”

page 105, for more information.

A long descriptive name. This could be used for labeling plots, for exam-
ple. If avariable hasno | ong_nane attribute assigned, the variable name
should be used as a defaullt.

A scalar specifying the minimum valid value for this variable.
A scalar specifying the maximum valid value for this variable.

A vector of two numbers specifying the minimum and maximum valid val-
ues for this variable, equivalent to specifying values for both val i d_mi n
and val i d_max attributes. Any of these attributes define the valid range.
The attribute val i d_r ange must not be defined if either val i d_ni n or
val i d_max is defined.

Generic applications should treat values outside the valid range as miss-
ing. Thetype of each val i d_r ange, val i d_ni n and val i d_max attribute
should match the type of its variable (except that for byt e data, these can
be of asigned integral type to specify the intended range).

If neither val i d_mi n, val i d_max nor val i d_r ange is defined then
generic applications should define avalid range asfollows. If the data type
iIsbyteand _Fi I | val ue isnot explicitly defined, then the valid range
should include all possible values. Otherwise, the valid range should
excludethe _Fi I | val ue (whether defined explicitly or by default) as fol-
lows. If the _Fi I | val ue is positive then it defines avalid maximum, other-
wise it defines avalid minimum. For integer types, there should be a
difference of 1 between the Fi | | val ue and thisvalid minimum or maxi-
mum. For floating point types, the difference should be twice the mini-
mum possible (1 in the least significant bit) to allow for rounding error.

If present for avariable, the data are to be multiplied by thisfactor after the
data are read by the application that accesses the data.

Chapter 8: Attributes

add_of f set

_FillVval ue

m ssi ng_val ue

si gnedness

71

If present for avariable, this number is to be added to the data after it is
read by the application that accesses the data. If both scal e_f act or and
add_of f set attributes are present, the dataarefirst scaled before the offset
isadded. The attributesscal e_fact or and add_of f set can be used
together to provide simple data compression to store |ow-resolution float-
ing-point dataas small integersin anetCDF dataset. When scaled data are
written, the application should first subtract the offset and then divide by
the scale factor.

When scal e_f act or and add_of f set are used for packing, the associ-
ated variable (containing the packed data) istypically of type byte or short,
whereas the unpacked values are intended to be of type float or double.
The attributesscal e_f act or and add_of f set should both be of the type
intended for the unpacked data, e.g. float or double.

The _Fi | | val ue attribute specifies thefill value used to pre-fill disk space
allocated to the variable. Such pre-fill occurs unless nofill mode is set
using NFOO_SET_FI LL. See Section 5.12 “ Set Fill Mode for Writes:
NFOO_SET_FI LL,” page4l, for details. Thefill valueis returned when
reading values that were never written. If _Fi | | Val ue isdefined then it
should be scalar and of the same type asthe variable. It is not necessary to
define your own _Fi | | Val ue attribute for avariable if the default fill
value for the type of the variable is adequate. However, use of the default
fill value for data type byte is not recommended. Note that if you change
the value of this attribute, the changed value applies only to subsequent
writes; previously written data are not changed.

Generic applications often need to write a value to represent undefined or
missing values. The fill value provides an appropriate value for this pur-
pose becauseit is normally outside the valid range and therefore treated as
missing when read by generic applications. It islegal (but not recom-
mended) for the fill value to be within the valid range.

See Section 7.8 “Fill Values,” page 67, for more information.

Thisattribute is not treated in any special way by the library or conforming
generic applications, but is often useful documentation and may be used
by specific applications. The ni ssi ng_val ue attribute can be a scalar or
vector containing values indicating missing data. These values should all
be outside the valid range so that generic applications will treat them as
missing.

Deprecated attribute, originally designed to indicate whether byte values
should be treated as signed or unsigned. The attributesval i d_ni n and
val i d_max may be used for this purpose. For example, if you intend that a
byte variable store only nonnegative values, you can useval id_nin = 0
andval i d_max = 255. Thisattributeisignored by the netCDF library.

72

FORTRAN_format A character array providing the format that should be used by FORTRAN
or Fortran 90 applications to print values for this variable. For example, if
you know avariable is only accurate to three significant digits, it would be
appropriate to define the FORTRAN_f or mat attribute as" (G10. 3) ".

title A global attribute that is a character array providing a succinct description
of what isin the dataset.

hi story A global attribute for an audit trail. Thisisacharacter array with aline for
each invocation of a program that has modified the dataset. Well-behaved
generic netCDF applications should append aline containing: date, time of
day, user name, program name and command arguments.

Conventi ons If present, ‘Conventi ons’ isaglobal attribute that is a character array for
the name of the conventionsfollowed by the dataset, in the form of astring
that isinterpreted as adirectory name relative to a directory that is arepos-
itory of documents describing sets of discipline-specific conventions. This
permitsahierarchical structurefor conventions and provides a place where
descriptions and examples of the conventions may be maintained by the
defining institutions and groups. The conventions directory nameis cur-
rently interpreted relative to the directory pub/ net cdf / Convent i ons/ on
the host machinef t p. uni dat a. ucar . edu. Alternatively, afull URL spec-
ification may be used to name a WWW site where documents that describe
the conventions are maintained.

For example, if agroup named NUWG agrees upon a set of conventions
for dimension names, variable names, required attributes, and netCDF rep-
resentations for certain discipline-specific data structures, they may storea
document describing the agreed-upon conventions in a dataset in the
NUWG subdirectory of the Conventions directory. Datasets that followed
these conventions would contain a global Convent i ons attribute with
value" NUWG' .

Later, if the group agrees upon some additional conventions for a specific
subset of NUWG data, for example time series data, the description of the
additiona conventions might be stored in the NUWH Ti me_seri es/ subdi-
rectory, and datasets that adhered to these additional conventions would
use the global Convent i ons attribute with value" NUWG Ti ne_seri es",
implying that this dataset adheres to the NUWG conventions and also to
the additional NUWG time-series conventions.

8.2 Createan Attribute: NF90_PUT_ATT

The function NF90_PUT_ATTadds or changes a variable attribute or global attribute of an open
netCDF dataset. If this attribute is new, or if the space required to store the attribute is greater than
before, the netCDF dataset must be in define mode.

Chapter 8: Attributes 73

Usage

Although it’s possible to create attributes of all types, text and double attributes are adequate for
MOost purposes.

function nf90_put_att(ncid, varid, nane, val ues)

i nt eger, intent(in) :: ncid, varid
character(len = *), intent(in) :: nane
any valid type, scalar or array of rank 1, &
intent(in) :: values
i nt eger :: nf90_put _att
nci d NetCDF ID, from a previous call to NF9O_OPEN Or NF90_CREATE.
varid Variable ID.
name Attribute name. Must begin with an aphabetic character, followed by zero

or more alphanumeric characters including the underscore (‘ _’). Caseissig-
nificant. Attribute name conventions are assumed by some netCDF generic
applications, e.g., uni t s asthe name for astring attribute that givesthe units
for anetCDF variable. A table of conventional attribute namesis presented
in the earlier chapter on the netCDF interface.

val ues An array of attribute values. Values may be supplied as scalars or as arrays
of rank one (one dimensional vectors). The external datatype of the attribute
IS set to match the internal representation of the argument, that isif val ues
isatwo byte integer array, the attribute will be of type NF90_I NT2. Fortran
90 intrinsic functions can be used to convert attributes to the desired type.

Errors

NF90_PUT_ATT returnsthe value NFO0 _NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

e ThevariableID isinvalid for the specified netCDF dataset.

* The specified netCDF typeisinvalid.

» The specified length is negative.

* The specified open netCDF dataset is in data mode and the specified attribute would expand.

» The specified open netCDF dataset isin data mode and the specified attribute does not already
exist.

* The specified netCDF 1D does not refer to an open netCDF dataset.

e The number of attributes for this variable exceeds NFOO_MAX_ATTRS

Example

Hereis an example using NF90_PUT_ATT to add a variable attribute named val i d_r ange for a
netCDF variable named r h and aglobal attribute named ti t | e to an existing netCDF dataset
named f oo. nc:

74

use net cdf
inmplicit none
integer :: ncid, status, RHVarlD

status = nf90_open(“foo.nc”, nf90_wite, ncid)
if (status /= nf90 _noerr) call handle_err(status)

I Enter define node so we can add the attribute

status = nf90_redef(ncid)

if (status /= nf90 _noerr) call handle_err(status)

I Get the variable ID for “rh”..

status = nf90_ing_varid(ncid, “rh”, RHVarlD)

if (status /= nf90 _noerr) call handle_err(status)

I ... put the range attribute, setting it to eight byte reals..
status = nf90_put _att(ncid, RHVarlD, “valid_range”, real ((/ 0, 100 /))
I ... and the title attribute.

if (status /= nf90 _noerr) call handle_err(status)

status = nf90_put _att(ncid, RHVarID, “title”, “exanple net CDF dataset”))
if (status /= nf90 _noerr) call handle_err(status)

I Leave define node

status = nf90_enddef (nci d)

if (status /= nf90 _noerr) call handle_err(status)

8.3 Get Information about an Attribute: NF9O | nquire_Att and
NFOO0_| NQ _ATTNAME

The function NF9O_I nqui re_at t returnsinformation about a netCDF attribute given the variable
ID and attribute name. Information about an attribute includesitstype, length, name, and number.
See NFOO_GET_ATT for getting attribute values.

The function NFO0_I NQ_ATTNAME gets the name of an attribute, given its variable ID and number.
This function is useful in generic applications that need to get the names of al the attributes asso-
ciated with avariable, since attributes are accessed by name rather than number in all other
attribute functions. The number of an attribute is more volatile than the name, since it can change
when other attributes of the same variable are deleted. Thisiswhy an attribute number is not
called an attribute ID.

Usage
function nf90_Inquire_Attribute(ncid, varid, name, xtype, len, attnum
i nt eger, intent(in) ;. ncid, varid
character (len = *), intent(in) © name
i nt eger, intent(out), optional :: xtype, len, attnum
i nt eger :: nf90_Inquire_Attribute

function nf90_inqg_attname(ncid, varid, attnum namne)
i nt eger, intent(in) :: ncid, varid, attnum
character (len = *), intent(out) :: name

Chapter 8: Attributes 75

i nt eger :: nf90_ing_attname
nci d NetCDF ID, from a previous call to NF_OPEN or NF90_CREATE.
varid Variable ID of the attribute’s variable, or NF90_GLOBAL for aglobal attribute.
name Attribute name, input except that for NF90_I NQ_ATTNAME, thisis where the

attribute name is returned.

xtype Returned attribute type, one of the set of predefined netCDF externa data
types. The valid netCDF external datatypes are NF90_BYTE, NFOO_CHAR,
N9O_SHORT, NF90_I| NT, NFOO_FLOAT, and NF90_DOUBLE.

I en Returned number of values currently stored in the attribute. For a string-val-
ued attribute, thisisthe number of charactersin the string.

attnum For NF90_I NQ ATTNANE, the input attribute number; for
NF90_| nqui re_At tri but e, thereturned attribute number. The attributesfor
each variable are numbered from 1 (the first attribute) to NATTS, where
NATTS is the number of attributes for the variable, as returned from acall to
NF90 I nquire_ Vari abl e.
(If you aready know an attribute name, knowing its number is not very use-
ful, because accessing information about an attribute requires its name.)

Errors

Each function returns the value NF90_NCERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

* ThevariableID isinvalid for the specified netCDF dataset.

» The specified attribute does not exist.

* The specified netCDF 1D does not refer to an open netCDF dataset.

» For NFOO_I NQ_ATTNAME, the specified attribute number is negative or more than the number of
attributes defined for the specified variable.

Example

Hereis an example using NF90_I nqui re_Att to inquire about the lengths of an attribute named
val i d_r ange for anetCDF variable named r h and a global attribute namedtitl e in an existing
netCDF dataset named f 0o. nc:

use net cdf

inmplicit none

integer :: ncid, status

integer :: RHvarlD I Variable ID

i nteger :: validRangeLength, titlelLength ! Attribute |engths

status = nf90_open(“foo.nc”, nf90_nowite, ncid)
if (status /= nf90 _noerr) call handle_err(status)

76

I Get the variable ID for “rh”..
status = nf90_ing_varid(ncid, “rh”, RHVarlD)
if (status /= nf90 _noerr) call handle_err(status)
I ... get the length of the “valid_range” attribute..
status = nf90_Inquire_Att(ncid, RHVarID, “valid_range”, &
| en = val i dRangeLengt h)
if (status /= nf90 _noerr) call handle_err(status)
I ... and the global title attribute.
status = nf90_Inquire_Att(ncid, nf90_global, “title”, len = titleLength)
if (status /= nf90 _noerr) call handle_err(status)

8.4 Get Attribute'sValues:. NF90_GET_ATT

Function nf90_get_att gets the value(s) of a netCDF attribute, given its variable ID and name.

Usage
function nf90 get _att(ncid, varid, nane, val ues)
i nt eger, intent(in) :: ncid, varid
character(len = *), intent(in) :: name
any valid type, scalar or array of rank 1, &
intent(out) :: values
i nt eger :: nf90_get _att
ncid NetCDF ID, from aprevious call to NF9O_OPEN or NF90_CREATE.
varid Variable ID of the attribute's variable, or NF90_GLOBAL for aglobal attribute.
nane Attribute name.
val ues Returned attribute values. All elements of the vector of attribute values are

returned, so you must provide enough space to hold them. If you don’t know
how much space to reserve, call NF9O_I nqui re_Att first to find out the
length of the attribute. If thereisonly asingle attribute val ues may be asca-
lar. If the attribute is of type character val ues should be a variable of type
char act er withthel en Fortran 90 attribute set to an appropriate value (i.e.
character (len = 80) :: val ues). You cannot read character datafrom
anumeric variable or numeric datafrom atext variable. For numeric data, if
the type of data differs from the netCDF variable type, type conversion will
occur (see Section 3.3 “Type Conversion,” page 24, for details).

Errors

NF90_GET_ATT returnsthe value NF90_NOERRif no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* ThevariableID isinvalid for the specified netCDF dataset.
» The specified attribute does not exist.
* The specified netCDF 1D does not refer to an open netCDF dataset.

Chapter 8: Attributes 77

» One or more of the attribute values are out of the range of values representable by the desired
type.

Example

Hereis an example using NFOO_GET_ATT to determine the values of an attribute named

val i d_r ange for anetCDF variable named r h and aglobal attribute namedti t1 e inan existing
netCDF dataset named f oo. nc. In this example, it is assumed that we don’t know how many val-
ueswill be returned, so we first inquire about the length of the attributes to make sure we have
enough space to store them:

use net cdf
inmplicit none
i nt eger .. ncid, status
i nt eger .. RHvarl D I Variable ID
i nt eger .. val i dRangeLength, titleLength ! Attribute |engths
real, dinension(:), allocatable, &
val i dRange
character (len = 80) :: title

status = nf90 open(“foo.nc”, nf90 nowite, ncid)
if (status /= nf90_noerr) call handl e_err(status)

I Find the I engths of the attributes
status = nf90_inqg_varid(ncid, “rh”, RHVarlD)
if (status /= nf90_noerr) call handl e_err(status)
status = nf90 Inquire Att(ncid, RHvVarID, “valid _range”, &
| en = val i dRangelLengt h)
if (status /= nf90_noerr) call handl e_err(status)
status = nf90 Inquire Att(ncid, nf90 global, “title”, len = titleLength)
if (status /= nf90_noerr) call handle_err(status)

I'Al | ocate space to hold attribute val ues, check string | engths
al | ocat e(val i dRange(val i dRangeLength), stat = status)
if(status /=0 .or. len(title) < titlelLength)

print *, “Not enough space to put attribute values.”

exit
end if
| Read the attributes.
status = nf90 get att(ncid, RHVarlD, “valid_range”, vali dRange)
if (status /= nf90_noerr) call handle_err(status)
status = nf90 get att(ncid, nf90 _global, “title”, title)
if (status /= nf90_noerr) call handle_err(status)

8.5 Copy Attributefrom One NetCDF to Another: NFOO_COPY_ATT

The function NFOO_COPY_ATT copies an attribute from one open netCDF dataset to another. It can
also be used to copy an attribute from one variable to another within the same netCDF.

78

Usage
function nf90 copy_att(ncid_in, varid_in, name, ncid_out, varid_out)
i nt eger, intent(in) :: ncid_in, wvarid_in
character (len = *), intent(in) :: nane
i nt eger, intent(in) :: ncid_out, varid_out
i nt eger :: nf90_copy_att
ncid_in The netCDF ID of an input netCDF dataset from which the attribute will be
copied, from a previous call to NFOO_OPEN Or NF90_ CREATE.
varid_in ID of the variable in the input netCDF dataset from which the attribute will
be copied, or NF90_GLOBAL for aglobal attribute.
nanme Name of the attribute in the input netCDF dataset to be copied.
nci d_out The netCDF ID of the output netCDF dataset to which the attribute will be

copied, from aprevious call to NF90_OPEN Or NF90_CREATE. It is permissible
for the input and output netCDF IDs to be the same. The output netCDF
dataset should be in define mode if the attribute to be copied does not
aready exist for the target variable, or if it would cause an existing target
attribute to grow.

vari d_out ID of the variablein the output netCDF dataset to which the attribute will be
copied, or NF90_GLOBAL to copy to aglobal attribute.

Errors

NF90_COPY_ATT returns the value NF90_NCERR if no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

» Theinput or output variable ID isinvalid for the specified netCDF dataset.

» The specified attribute does not exist.

* Theoutput netCDF is not in define mode and the attribute is new for the output dataset is
larger than the existing attribute.

e Theinput or output netCDF 1D does not refer to an open netCDF dataset.

Example

Hereis an example using NF90_COPY_ATT to copy the variable attribute uni t s from the variable
rh in an existing netCDF dataset named f oo. nc to the variable avgr h in another existing netCDF
dataset named bar . nc, assuming that the variable avgr h already exists, but does not yet have a
uni ts attribute:

use net cdf

inmplicit none

integer :: ncidl, ncid2, status

integer :: RHVarlD, avgRHVarlD I Variable ID

status = nf90 _open(“foo.nc”, nf90_nowite, ncidl)

Chapter 8: Attributes 79

if (status /= nf90 _noerr) call handle_err(status)
status = nf90_open(“bar.nc”, nf90_wite, ncid2)
if (status /= nf90 _noerr) call handle_err(status)

I Find the IDs of the variables

status = nf90_inqg_varid(ncidl, “rh”, RHVarlD)

if (status /= nf90 _noerr) call handle_err(status)
status = nf90_inqg_varid(ncidl, “avgrh”, avgRHVarl D)
if (status /= nf90 _noerr) call handle_err(status)

status = nf90_redef (nci d2) I Enter define node

if (status /= nf90 _noerr) call handle_err(status)

I Copy variable attribute from*“rh” in file 1 to “avgrh” in file 1
status = nf90_copy_att(ncidl, RHvarI D, “units”, ncid2, avgRHVarl D)
if (status /= nf90 _noerr) call handle_err(status)

status = nf90_enddef (nci d2)

if (status /= nf90 _noerr) call handle_err(status)

8.6 Renamean Attribute: NF90 RENANME _ATT

The function NF90_RENAME_ATT changes the name of an attribute. If the new nameislonger than
the original name, the netCDF dataset must be in define mode. You cannot rename an attribute to
have the same name as another attribute of the same variable.

function nf90 renanme_att(ncid, varid, curnanme, newnane)

i nt eger, intent(in) :: ncid, wvarid
character (len = *), intent(in) :: curnane, newname
i nt eger ;. nf90_renane_att
nci d NetCDF ID, from a previous call to NF9O_OPEN Or NFO0_CREATE
varid ID of the attribute’s variable, or NFOO_GLOBAL for a global attribute
cur name The current attribute name.
newname The new name to be assigned to the specified attribute. If the new nameis

longer than the current name, the netCDF dataset must be in define mode.
Errors

NF90_RENANME_ATT returns the value NFOO_NOERR if no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errorsinclude:

* The specified variable ID is not valid.

* Thenew attribute name is already in use for another attribute of the specified variable.

* The specified netCDF dataset is in data mode and the new name is longer than the old name.
» The specified attribute does not exist.

» The specified netCDF ID does not refer to an open netCDF dataset.

80

Example

Hereisan example using NFO0_RENAVE_ATT to rename the variable attribute uni t s toUni t s for a
variabler h inan existing netCDF dataset named f oo. nc:

use net cdf

inmplicit none

integer :: ncidl, status

integer :: RHvarlD I Variable ID

status = nf90_open(“foo.nc”, nf90_nowite, ncid)
if (status /= nf90 _noerr) call handle_err(status)

I Find the IDs of the variables
status = nf90_inqg_varid(ncid, “rh”, RHVarlD)
if (status /= nf90 _noerr) call handle_err(status)

status = nf90 _renane_att(ncid, RHVarI D, “units”, “Units”)
if (status /= nf90 _noerr) call handle_err(status)

8.7 Deletean Attribute: NFOO_DEL _ATT

The function NFOO_DEL_ATT deletes a netCDF attribute from an open netCDF dataset. The
netCDF dataset must be in define mode.

Usage
function nf90 del att(ncid, varid, nane)
i nteger, intent(in) :: ncid, varid
character (len = *), intent(in) :: nane
i nt eger .. nf90 _del att
nci d NetCDF ID, from aprevious call to NFOO_OPEN or NFO0_CREATE.
varid ID of the attribute’s variable, or NF90_G.OBAL for a global attribute.
name The original attribute name.
Errors

NF90_DEL_ATT returnsthe value NFO0 _NOERR if no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errorsinclude:

The specified variable ID is not valid.

The specified netCDF dataset isin data mode.

The specified attribute does not exist.

The specified netCDF ID does not refer to an open netCDF dataset.

Chapter 8: Attributes

Example

81

Hereisan example using NF90_DEL_ATT to delete the variable attribute Uni t s for avariabler h in

an existing netCDF dataset hamed f o0o. nc:

use net cdf

inmplicit none

integer :: ncidl, status

integer :: RHvarlD I Variable ID

status = nf90_open(“foo.nc”, nf90_nowite, ncid)
if (status /= nf90 _noerr) call handle_err(status)

I Find the IDs of the variables
status = nf90_inqg_varid(ncid, “rh”, RHVarlD)

if (status /= nf90 _noerr) call handle_err(status)

status = nf90_redef(ncid) I Enter define node
if (status /= nf90 _noerr) call handle_err(status)

status = nf90 _del _att(ncid, RHVarID, “Units”)

if (status /= nf90 _noerr) call handle_err(status)

status = nf90_enddef (nci d)

if (status /= nf90 _noerr) call handle_err(status)

82

Chapter 9: NetCDF File Structure and Performance 83

O NetCDF File Structure and Performance

This chapter describes the file structure of a netCDF dataset in enough detail to aid in understand-
ing netCDF performance issues.

NetCDF is a data abstraction for array-oriented data access and a software library that provides a
concrete implementation of the interfaces that support that abstraction. The implementation pro-
vides a machine-independent format for representing arrays. Although the netCDF file format is
hidden below the interfaces, some understanding of the current implementation and associated file
structure may help to make clear why some netCDF operations are more expensive than others.

For a detailed description of the netCDF format, see Appendix B “File Format Specification,”
page 107. Knowledge of the format is not needed for reading and writing netCDF data or under-
standing most efficiency issues. Programs that use only the documented interfaces and that make
no assumptions about the format will continue to work even if the netCDF format is changed in
the future, because any such change will be made below the documented interfaces and will sup-
port earlier versions of the netCDF file format.

9.1 Partsof aNetCDF File
A netCDF dataset is stored as a single file comprising two parts.

» aheader, containing all the information about dimensions, attributes, and variables except for
the variable data;

* adata part, comprising fixed-size data, containing the data for variables that don’t have an
unlimited dimension; and variable-size data, containing the data for variables that have an
unlimited dimension.

Both the header and data parts are represented in a machine-independent form. Thisform isvery
similar to XDR (eXternal Data Representation), extended to support efficient storage of arrays of
non-byte data.

The header at the beginning of the file contains information about the dimensions, variables, and

attributesin thefile, including their names, types, and other characteristics. The information about
each variable includes the offset to the beginning of the variable’'s data for fixed-size variables or
the relative offset of other variables within arecord. The header aso contains dimension lengths

and information needed to map multidimensional indices for each variable to the appropriate off-
sets.

This header has no usable extra space; it isonly aslarge as it needs to be for the dimensions, vari-
ables, and attributes (including all the attribute values) in the netCDF dataset. This has the advan-
tage that netCDF files are compact, requiring very little overhead to store the ancillary data that
makes the datasets self-describing. A disadvantage of this organization is that any operation on a
netCDF dataset that requires the header to grow (or, less likely, to shrink), for example adding
new dimensions or new variables, requires moving the data by copying it. This expenseis

incurred when NFO0_ENDDEF is called, after aprevious call to NF90_REDEF. If you create all nec-
essary dimensions, variables, and attributes before writing data, and avoid later additions and
renamings of netCDF components that require more space in the header part of the file, you avoid
the cost associated with later changing the header.

When the size of the header is changed, datain the fileis moved, and the location of datavaluesin
the file changes. If another program is reading the netCDF dataset during redefinition, its view of
the file will be based on old, probably incorrect indexes. If netCDF datasets are shared across
redefinition, some mechanism external to the netCDF library must be provided that prevents
access by readers during redefinition, and causes the readers to call NF90_SYNC before any subse-
guent access.

The fixed-size data part that follows the header contains all the variable data for variables that do
not employ an unlimited dimension. The data for each variable is stored contiguously in this part
of thefile. If thereis no unlimited dimension, thisis the last part of the netCDF file.

The record-data part that follows the fixed-size data consists of a variable number of fixed-size
records, each of which contains datafor all the record variables. The record datafor each variable
is stored contiguously in each record.

The order in which the variable data appears in each data section is the same as the order in which
the variables were defined, in increasing numerical order by netCDF variable ID. This knowledge
can sometimes be used to enhance data access performance, since the best data accessis currently
achieved by reading or writing the datain sequential order.

9.2 TheExtended XDR Layer

XDR isastandard for describing and encoding data and alibrary of functions for external data
representation, allowing programmers to encode data structures in a machine-independent way.
NetCDF employs an extended form of XDR for representing information in the header part and
the data parts. This extended XDR is used to write portable data that can be read on any other
machine for which the library has been implemented.

The cost of using a canonical external representation for data varies according to the type of data
and whether the external form is the same as the machine's native form for that type.

For some data types on some machines, the time required to convert data to and from external
form can be significant. The worst case is reading or writing large arrays of floating-point dataon
amachine that does not use |EEE floating-point as its native representation.

9.3 LargeFile Support
It is possible to write netCDF files that exceed 2 GB on platforms that have "Large File Support”

(LFS). Such files would be platform-independent to other LFS platforms, but if you call nc_open
to access data from such afile on an older platform without LFS, you would expect a "file too

Chapter 9: NetCDF File Structure and Performance 85

large” error.

There are important constraints on the structure of large netCDF files that result from the 32-bit
relative offsets that are part of the netCDF file format:

» If youdon't usethe unlimited dimension, only one variable can exceed 2 Gbytesin size, but it
can be aslarge asthe underlying file system permits. It must be thelast variable in the dataset,
and the offset to the beginning of this variable must be less than about 2 Gbytes. For example,
the structure of the data might be something like:

net cdf bigfilel {

di nensi ons:
x=2000;
y=5000;
z=10000;

vari abl es:
doubl e x(x); /1 coordinate variabl es
doubl e y(y);
double z(2z);
doubl e var(x, y, z); // 800 Ghytes

}

» |If you use the unlimited dimension, any humber of record variables may exceed 2 Gbytesin
Size, aslong as the offset of the start of each record variable within arecord is less than about
2 Gbytes. For example, the structure of the datain a 2.4 Thyte file might be something like:

netcdf bigfile2 {
di mensi ons:
x=2000;
y=5000;
z=10;
t =UNLI M TED; /1 1000 records, for exanple
vari abl es:
doubl e x(x); /1 coordinate variabl es
doubl e y(y);
doubl e z(2z);
double t(t);
/1 3 record variables, 2.4 CGoytes per record
doubl e var1(t, x, y, z);
doubl e var2(t, x, y, z);
doubl e var3(t, x, y, z);

94 Thel/O Layer

An 1/O layer implemented much like the C standard /O (stdio) library is used by netCDF to read
and write portable data to netCDF datasets. Hence an understanding of the standard 1/0 library
provides answers to many questions about multiple processes accessing data concurrently, the use
of 1/0 buffers, and the costs of opening and closing netCDF files. In particular, it is possible to
have one process writing anetCDF dataset while other processesread it. Datareads and writes are

86

no more atomic than callsto stdiofread() andfwr i te().AnNF90_SYNCcall isanalogousto the
ff1 ush cal inthe C standard 1/0 library, writing unwritten buffered data so other processes can
read it; NFOO_SYNC also brings header changes up-to-date (for example, changes to attribute val-
ues). NF90_SHARE is analogous to setting a stdio stream to be unbuffered with t he _I ONBF flag to
set vbuf.

Asinthe stdio library, flushes are also performed when “seeks’ occur to a different area of the
file. Hence the order of read and write operations can influence 1/O performance significantly.
Reading datain the same order in which it was written within each record will minimize buffer
flushes.

You should not expect netCDF data access to work with multiple writers having the samefile
open for writing simultaneously.

It is possible to tune an implementation of netCDF for some platforms by replacing the 1/0O layer

with adifferent platform-specific 1/0O layer. Thismay change the similarities between netCDF and
standard /0, and hence characteristics related to data sharing, buffering, and the cost of 1/0 oper-
ations.

The distributed netCDF implementation is meant to be portable. Platform-specific ports that fur-
ther optimize the implementation for better 1/0 performance are practical in some cases.

9.5 UNICOS Optimization

Aswas mentioned in the previous section, it is possible to replace the 1/0O layer in order to
increase 1/0 efficiency. This has been done for UNICOS, the operating system of Cray computers
similar to the Cray Y-MP.

Additionally, it is possible for the user to obtain even greater 1/0 efficiency through appropriate
setting of the NETCDF_FFI GSPEC environment variable. This variable specifiesthe Flexible File |/
O buffers for netCDF /O when executing under the UNICOS operating system (the variableis
ignored on other operating systems). An appropriate specification can greatly increase the effi-
ciency of netCDF 1/0—to the extent that it can surpass default FORTRAN binary 1/0. Possible
specifications include the following:

buf a: 336: 2 2, asynchronous, 1/0 buffers of 336 blocks each (i.e., double buffering). This
is the default specification and favors sequential 1/O.

cache: 256: 8 8, synchronous, 256-block buffers. This favors larger random accesses.

cachea: 256: 8 8, asynchronous, 256-block buffers with a2 block read-ahead/write-behind

P2 factor. This also favors larger random accesses.
cachea: 8:256 256, asynchronous, 8-block buffers without read-ahead/write-behind. This
:0 favors many smaller pages without read-ahead for more random accesses as

typified by slicing netCDF arrays.

Chapter 9: NetCDF File Structure and Performance 87

cache: 8: 256, Thisisatwo layer cache. Thefirst (synchronous) layer is composed of 256

cachea.sds:1 g-plock buffersin memory, the second (asynchronous) layer is composed of

024:4:1 4 1024-block buffers on the SSD. This scheme works well when accesses
proceed through the dataset in random waves roughly 2x1024-blocks wide.

All of the options/configurations supported in CRI’s FFIO library are available through this mech-
anism. We recommend that you look at CRI’s /O optimization guide for information on using
FFIO to it'sfullest. This mechanism is also compatible with CRI’s EIE 1/O library.

Tuning the NETCDF_FFI OSPEC variable to a program’s 1/O pattern can dramatically improve per-
formance. Speedups of two orders of magnitude have been seen.

88

Chapter 10: NetCDF Utilities 89

10 NetCDF Utilities

One of the primary reasons for using the netCDF interface for applicationsthat deal with arraysis
to take advantage of higher-level netCDF utilities and generic applications for netCDF data. Cur-
rently two netCDF utilities are available as part of the netCDF software distribution:

* ncdunp reads a netCDF dataset and prints a textual representation of the information in the
dataset

* ncgen reads atextual representation of a netCDF dataset and generates the corresponding
binary netCDF file or aC or FORTRAN program to create the netCDF dataset

Users have contributed other netCDF utilities, and various visualization and analysis packages are
available that access netCDF data. For an up-to-date list of freely-available and commercial soft-
ware that can access or manipulate netCDF data, see the NetCDF Software list, ht t p: //

wWww. uni dat a. ucar . edu/ packages/ net cdf / sof tware. ht m

This chapter describes the ncgen and ncdunp utilities. These tools convert between binary
netCDF datasets and atext representation of netCDF datasets. The output of ncdunp and the input
to ncgen isatext description of anetCDF dataset in atiny language known as CDL (network
Common data form Description Language).

10.1 CDL Syntax

Below is an example of CDL, describing a netCDF dataset with several named dimensions (I at ,
| on, time), variables(z,t,p,rh,lat,lon,tine), variable attributes (uni ts, _Fil | val ue,
val i d_r ange), and some data.

net cdf foo { /1 exanpl e net CDF specification in CDL

di mensi ons:
lat = 10, lon =5, time = unlimted

vari abl es:
i nt lat(lat), lon(lon), time(tinme);
fl oat z(tine,lat,lon), t(time,lat,!|on);
double p(tine,lat,lon);
i nt rh(tinme,lat,lon);

lat:units "degrees_north";
[on:units "degrees_east";
time:units = "seconds"”;
z:units = "meters”
z:valid_range = 0., 5000.

p: _FillValue = -9999.

rh: _FillValue = -1;

dat a:
| at = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90

90

lon = -140, -118, -96, -84, -52;
}

All CDL statements are terminated by a semicolon. Spaces, tabs, and newlines can be used freely
for readability. Comments may follow the double slash characters// on any line.

A CDL description consists of three optional parts: dimensions, variables, and data. The variable
part may contain variable declarations and attribute assignments.

A dimension is used to define the shape of one or more of the multidimensional variables
described by the CDL description. A dimension has a name and a length. At most one dimension
in a CDL description can have the unlimited length, which means a variable using this dimension
can grow to any length (like arecord number in afile).

A variable represents amultidimensional array of values of the same type. A variable has aname,
adatatype, and a shape described by itslist of dimensions. Each variable may also have associ-
ated attributes (see below) as well as data values. The name, data type, and shape of avariable are
specified by its declaration in the variable section of a CDL description. A variable may have the
same name as a dimension; by convention such avariable contains coordinates of the dimension it
names.

An attribute contains information about a variable or about the whole netCDF dataset. Attributes
may be used to specify such properties as units, special values, maximum and minimum valid val-
ues, and packing parameters. Attribute information is represented by single values or arrays of
values. For example, uni t s is an attribute represented by a character array such ascel si us. An
attribute has an associated variable, a name, a data type, alength, and avalue. In contrast to vari-
ables that are intended for data, attributes are intended for ancillary data (data about data).

In CDL, an attribute is designated by a variable and attribute name, separated by acolon (‘: ’). Itis
possible to assign global attributesto the netCDF dataset as awhole by omitting the variable name
and beginning the attribute name with acolon (*: ’). The data type of an attributein CDL is
derived from the type of the value assigned to it. The length of an attribute is the number of data
values or the number of charactersin the character string assigned to it. Multiple values are
assigned to non-character attributes by separating the values with commas (*,). All values
assigned to an attribute must be of the same type.

CDL names for variables, attributes, and dimensions may be any combination of alphabetic or
numeric characters aswell as underscore (*_") , dash (‘- '), and dot (*.") characters, but names
beginning with *_’" are reserved for use by the library. Case is significant in CDL names. The
names for the primitive data types and their synonyms (char, byt e, short, i nt, | ong, f | oat,
real , doubl e) are reserved words in CDL, so the names of variables, dimensions, and attributes
must not be type names.

The optional data section of aCDL description iswhere netCDF variables may beinitialized. The
syntax of an initialization is simple:

variable =value 1, value 2, ...;

Chapter 10: NetCDF Utilities 91

The comma-delimited list of constants may be separated by spaces, tabs, and newlines. For multi-
dimensional arrays, the last dimension varies fastest. Thus, row-order rather than column order is
used for matrices. If fewer values are supplied than are needed to fill avariable, it is extended with
thefill value. The types of constants need not match the type declared for avariable; coercionsare
done to convert integers to floating point, for example. All meaningful type conversions are sup-
ported.

A special notation for fill valuesis supported: the _ character designates afill value for variables.

10.2 CDL Data Types

The CDL datatypes are:

char Characters.

byt e Eight-bit integers.

short 16-bit signed integers.

int 32-hit signed integers.

| ong (Deprecated, currently synonymous with int)
f1 oat | EEE single-precision floating point (32 bits).
real (Synonymous with float).

doubl e | EEE double-precision floating point (64 bits).

Except for the added data-type byt e and the lack of the type qualifier unsi gned, CDL supports
the same primitive data types as C. In declarations, type names may be specified in either upper or
lower case.

Thebyt e type differsfrom the char typeinthat it isintended for eight-bit data, and the zero byte
has no special significance, asit may for character data. The ncgen utility converts byt e declara-
tionsto char declarationsin the output C code and to BYTE, | NTEGER* 1, or similar platform-spe-
cific declaration in output FORTRAN code.

Theshort type holds values between -32768 and 32767. The ncgen utility convertsshort decla-
rationsto short declarationsin the output C code and to | NTEGER* 2 declaration in output FOR-
TRAN code.

Thei nt type can hold values between -2147483648 and 2147483647. The ncgen utility converts
i nt declarationstoi nt declarationsin the output C code and to | NTEGER declarations in output
FORTRAN code. In CDL declarationsi nt eger and | ong are accepted as synonymsfor i nt .

Thef | oat type can hold values between about -3.4+38 and 3.4+38, with external representation
as 32-bit IEEE normalized single-precision floating-point numbers. The ncgen utility converts
fl oat declarationstof| oat declarationsin the output C code and to REAL declarations in output

92

FORTRAN code. In CDL declarationsr eal isaccepted as asynonym for f | oat .

The doubl e type can hold values between about -1.7+308 and 1.7+308, with external representa-
tion as 64-bit |EEE standard normalized double-precision, floating-point numbers. Thencgen
utility converts doubl e declarationsto doubl e declarationsin the output C code and to DOUBLE
PRECI SI ON declarations in output FORTRAN code.

10.3 CDL Notation for Data Constants
This section describes the CDL notation for constants.

Attributes areinitialized in thevari abl es section of a CDL description by providing alist of
constants that determines the attribute's type and length. (In the C and FORTRAN procedural
interfaces to the netCDF library, the type and length of an attribute must be explicitly provided
when it is defined.) CDL defines a syntax for constant values that permits distinguishing among
different netCDF types. The syntax for CDL constantsis similar to C syntax, except that type suf-
fixes are appended to short sand f | oat sto distinguish them from i nt sand doubl es.

A byte constant is represented by a single character or multiple character escape sequence
enclosed in single quotes. For example:

"a' /1 ASCI| a
"\ 0O /1l a zero byte
"\n' /1 ASCI| newine character

"\ 33 /1 ASClI| escape character (33 octal)
"\x2b" /] ASClI| plus (2b hex)
"\376' [/ 377 octal = -127 (or 254) deci nal

Character constants are enclosed in double quotes. A character array may be represented as a
string enclosed in double quotes. Multiple strings are concatenated into a single array of charac-
ters, permitting long character arrays to appear on multiple lines. To support multiple variable-
length string values, a conventional delimiter such as‘,’ may be used, but interpretation of any
such convention for a string delimiter must be implemented in software above the netCDF library
layer. The usual escape conventions for C strings are honored. For example:

"a" /1 ASCll ‘&

"Two\nlines\n" // a 10-character string with two enbedded new i nes
"a bell:\007" [// a string containing an ASCH| bel

"ab", "cde" /1 the sanme as "abcde"

The form of ashort constant is an integer constant with an ‘s’ or ‘S’ appended. If ashort con-
stant beginswith ‘0’ it isinterpreted as octal. When it beginswith ‘ox’, it isinterpreted as a hexa-
decimal constant. For example:

2s // a short 2
0123s /'l octa
Ox7ffs [// hexadeci nal

Chapter 10: NetCDF Utilities 93

Theform of ani nt constant isan ordinary integer constant. If ani nt constant beginswith ‘0’, it
isinterpreted as octal. When it beginswith ‘Ox’, it isinterpreted as a hexadecimal constant. Exam-
plesof validi nt constantsinclude:

-2

0123 /1 octal

Ox7ff /1 hexadeci nmal

1234567890L /1 deprecated, uses old long suffix

Thef oat typeisappropriate for representing data with about seven significant digits of preci-
sion. Theform of af | oat constant isthe same as a C floating-point constant withan ‘f* or ‘F’
appended. A decimal pointisrequired inaCDL f | oat to distinguish it from an integer. For exam-
ple, the following are al acceptablef | oat constants:

-2.0f

3. 14159265358979f /1l will be truncated to |ess precision
1.f

Af

The doubl e typeis appropriate for representing floating-point data with about 16 significant dig-
its of precision. The form of adoubl e constant is the same as a C floating-point constant. An
optional ‘d’ or ‘D' may be appended. A decimal point isrequired in a CDL doubl e to distinguish
it fromani nt eger. For example, the following are all acceptable double constants:

-2.0

3. 141592653589793
1. 0e- 20

1.d

10. 4 ncgen

The ncgen tool generates a netCDF file or a C or FORTRAN program that creates a netCDF
dataset. If no options are specified in invoking ncgen, the program merely checks the syntax of
the CDL input, producing error messages for any violations of CDL syntax.

UNIX syntax for invoking ncgen:
ncgen [-b] [-o netcdf-file] [-c] [-f] [-n] [inputfilg]

where:

-b Create a (binary) netCDF file. If the ‘- o’ option is absent, a default file
name will be constructed from the netCDF name (specified after the
net cdf keyword in the input) by appending the ‘. nc’ extension. Warn-
ing: if afilealready existswith the specified name it will be overwrit-
ten.

94

-0 netcdf-file Namefor the netCDF file created. If this option is specified, it implies the
‘- b’ option. (This option is necessary because netCDF files are direct-
access files created with seek calls, and hence cannot be written to stan-
dard output.)

-C Generate C source code that will create a netCDF dataset matching the
netCDF specification. The C source code is written to standard output.
Thisisonly useful for relatively small CDL files, since all the dataiis
included in variable initializations in the generated program.

-f Generate FORTRAN source code that will create anetCDF dataset match-
ing the netCDF specification. The FORTRAN source code is written to
standard output. Thisisonly useful for relatively small CDL files, sinceall
the dataisincluded in variable initializations in the generated program.

-n Deprecated. Likethe ‘- b’ option, except creates a netCDF file with a
‘. cdf " extension instead of an ‘. nc’ extension, in the absence of an output
filename specified by the ‘- o’ option. This option is only supported for
backward compatibility.

Examples

Check the syntax of the CDL filef oo. cdl :
ncgen foo. cdl

From the CDL filef oo. cdl , generate an equivalent binary netCDF file named bar . nc:
ncgen -o bar.nc foo.cd

From the CDL filef oo. cdl , generate a C program containing netCDF function invocations that
will create an equivalent binary netCDF dataset:

ncgen -c foo.cdl > foo.c

10. 5ncdunp

The ncdunp tool generates the CDL text representation of a netCDF dataset on standard output,
optionally excluding some or all of the variable datain the output. The output from ncdunp is
intended to be acceptable as input to ncgen. Thus ncdunp and ncgen can be used as inversesto
transform data representation between binary and text representations.

ncdunp may also be used as a simple browser for netCDF datasets, to display the dimension
names and lengths; variable names, types, and shapes; attribute names and values; and optionally,
the values of datafor all variables or selected variablesin a netCDF dataset.

ncdunp defines a default format used for each type of netCDF variable data, but this can be over-

Chapter 10: NetCDF Utilities 95

riddenif aC format attribute is defined for anetCDF variable. In this case, ncdunp will use the
C format attribute to format values for that variable. For example, if floating-point data for the
netCDF variable z is known to be accurate to only three significant digits, it might be appropriate
to use this variable attribute:

Z:C format = "% 3g"

ncdunp uses‘_’ to represent data values that are equal to the _Fi | | val ue attribute for avariable,
intended to represent data that has not yet been written. If avariable hasno _Fi | | val ue attribute,
the default fill value for the variable type is used unless the variable is of byte type.

UNIX syntax for invoking ncdunp:

ncdump [-c | -h] [-v varl,.] [-b lang] [-f lang]
[-1 len] [-p fdig[,ddig]] [-n name] [input-file]
where:
-C Show the values of coordinate variables (variables that are also dimensions)

aswell asthe declarations of all dimensions, variables, and attribute values.
Data values of non-coordinate variables are not included in the output. This
is often the most suitable option to use for a brief look at the structure and
contents of a netCDF dataset.

-h Show only the header information in the output, that is, output only the dec-
larations for the netCDF dimensions, variables, and attributes of the input
file, but no data values for any variables. The output isidentical to using the
‘- ¢’ option except that the values of coordinate variables are not included.
(At most oneof ‘- ¢’ or ‘- h’ options may be present.)

-v ovarl, .. The output will include data values for the specified variables, in addition to
the declarations of all dimensions, variables, and attributes. One or more
variables must be specified by name in the comma-delimited list following
this option. The list must be a single argument to the command, hence can-
not contain blanks or other white space characters. The named variables
must be valid netCDF variablesin the input-file. The default, without this
option and in the absence of the ‘- ¢’ or ‘- h’ options, isto include data val-
ues for all variablesin the output.

-b lang A brief annotation in the form of a CDL comment (text beginning with the
characters‘/ /") will be included in the data section of the output for each
‘row’ of data, to help identify data values for multidimensional variables. If
lang beginswith ‘C or ‘c’, then C language conventions will be used (zero-
based indices, last dimension varying fastest). If lang beginswith ‘F’ or ‘f ’,
then FORTRAN language conventions will be used (one-based indices, first
dimension varying fastest). In either case, the datawill be presented in the
same order; only the annotations will differ. This option may be useful for
browsing through large volumes of multidimensional data.

96

-f lang Full annotationsin the form of trailing CDL comments (text beginning with
the characters '/ /") for every data value (except individual charactersin
character arrays) will be included in the data section. If lang beginswith ‘C
or ‘c’, then C language conventions will be used (zero-based indices, last
dimension varying fastest). If lang beginswith ‘F’ or ‘f ’, then FORTRAN
language conventions will be used (one-based indices, first dimension vary-
ing fastest). In either case, the datawill be presented in the same order; only
the annotations will differ. This option may be useful for piping datainto
other filters, since each data value appears on aseparate line, fully identified.
(Atmost oneof ‘- b’ or ‘- f’ options may be present.)

-1 len Changes the default maximum line length (80) used in formatting lists of
non-character data values.

-p float _digits[, double digits]

Specifies default precision (number of significant digits) to usein displaying
floating-point or double precision data values for attributes and variables. If
specified, this value overrides the value of the C f or mat attribute, if any, for
avariable. Floating-point data will be displayed with float_digits significant
digits. If double digitsis also specified, double-precision values will be dis-
played with that many significant digits. In the absence of any ‘- p’ specifica-
tions, floating-point and double-precision data are displayed with 7 and 15
significant digits respectively. CDL files can be made smaller if less preci-
sionisrequired. If both floating-point and double precisions are specified,
the two values must appear separated by a comma (no blanks) asasingle
argument to the command.

-n nane CDL requires a name for anetCDF dataset, for use by ‘ncgen -b’ in gener-
ating a default netCDF dataset name. By default, ncdunp constructs this
name from the last component of the file name of the input netCDF dataset
by stripping off any extension it has. Use the ‘- n’ option to specify a differ-
ent name. Although the output file name used by ‘ncgen - b’ can be speci-
fied, it may be wise to have ncdunp change the default name to avoid
inadvertently overwriting a valuable netCDF dataset when using ncdunp,
editing the resulting CDL file, and using ‘ncgen - b’ to generate a new
netCDF dataset from the edited CDL file.

Examples
Look at the structure of the datain the netCDF dataset f oo. nc:

ncdunmp -c¢ foo.nc

Produce an annotated CDL version of the structure and datain the netCDF dataset f oo. nc, using
C-style indexing for the annotations:

Chapter 10: NetCDF Utilities 97

ncdump -b ¢ foo.nc > foo. cdl

Output data for only the variables uwi nd and vwi nd from the netCDF dataset f oo. nc, and show
the floating-point data with only three significant digits of precision:

ncdunmp -v uwi nd,vwind -p 3 foo.nc
Produce afully-annotated (one data value per line) listing of the datafor the variable onega, using
FORTRAN conventions for indices, and changing the netCDF dataset name in the resulting CDL
fileto orega:

ncdump -v onega -f fortran -n onega foo.nc > Z cdl

98

Chapter 11: Answersto Some Frequently Asked Questions 99

11 Answersto Some Freguently Asked Ques-
tions

This chapter contains answers to some of the most frequently asked questions about netCDF. A
more comprehensive and up-to-date FAQ document for netCDF ismaintained at ht t p: / /
www. uni dat a. ucar . edu/ packages/ net cdf/faq. ht m .

What IsnetCDF?

NetCDF (network Common Data Form) is an interface for array-oriented data access and afreely-
distributed collection of software librariesfor C, FORTRAN, C++, and Per| that provide imple-
mentations of the interface. The netCDF software was developed by Glenn Davis, Russ Rew, and
Steve Emmerson at the Unidata Program Center in Boulder, Colorado, and augmented by contri-
butions from other netCDF users. The netCDF libraries define a machine-independent format for
representing arrays. Together, the interface, libraries, and format support the creation, access, and
sharing of array-oriented data.

NetCDF datais:

» Self-describing. A netCDF dataset includes information about the data it contains.

» portable. A netCDF dataset is represented in aform that can be accessed by computers with
different ways of storing integers, characters, and floating-point numbers.

» Direct-access. A small subset of alarge dataset may be accessed efficiently, without first read-
ing through all the preceding data.

» Appendable. Data can be appended to a netCDF dataset along one dimension for multiple
variables without copying the dataset or redefining its structure. The structure of a netCDF
dataset may also be changed, though in some cases thisisimplemented by copying the data.

e Sharable. One writer and multiple readers may simultaneously access the same netCDF
dataset.

How do | get the netCDF software package?
Source distributions are available via anonymous FTP from the directory

ftp://ftp.unidata.ucar.edu/ pub/netcdf/.

Filesin that directory include:

netcdf.tar.Z A compressed tar file of source code for the latest general release.

netcdf-beta.tar.Z The current beta-test release.

Binary distributions for some platforms are available from the directory

100

ftp://ftp.unidata.ucar.edu/ pub/binary/

Source for the Perl interface is available as a separate package, via anonymous FTP from the
directory

ftp://ftp.unidata.ucar. edu/pub/netcdf-perl/.

Isthere any access to netCDF information on the World Wide Web?

Yes, the latest version of this FAQ document as well as a hypertext version of the NetCDF User’s
Guide and other information about netCDF are available from

http://ww. uni dat a. ucar . edu/ packages/ net cdf .

What has changed since the previousrelease?

Version 3 keeps the same format, but introduces new interfaces for C and FORTRAN that provide
automatic type conversion and improved type safety. For more details, see:

htt p: // ww. uni dat a. ucar . edu/ packages/ net cdf/rel ease-notes. htni .

Isthereamailing list for netCDF discussions and questions?

Yes. For information about the mailing list and how to subscribe or unsubscribe, send a message
to maj or dono@ini dat a. ucar . edu With no subject and with the following line in the body of the

message:

i nfo netcdf group

Who else uses netCDF?

The netCDF mailing list has amost 500 addresses (some of which are aliases to more addresses)
in fifteen countries. Severa groups have adopted netCDF as a standard way to represent some
forms of array-oriented data, including groupsin the atmospheric sciences, hydrol ogy, oceanogra-
phy, environmental modeling, geophysics, chromatography, mass spectrometry, and neuro-imag-
ing.

A description of some of the projects and groups that have used netCDF is available from

htt p: //ww. uni dat a. ucar . edu/ packages/ net cdf / usage. htni .

What isthe physical format for a netCDF files?

See Chapter 9 “NetCDF File Structure and Performance,” page 83, for an explanation of the

Chapter 11: Answersto Some Frequently Asked Questions 101

physical structure of netCDF data at a high enough level to make clear the performance implica
tions of different data organizations. See Appendix B “File Format Specification,” page 107, for a
detailed specification of the file format.

Programs that access netCDF data should perform all access through the documented interfaces,
rather than relying on the physical format of netCDF data. That way, any future changes to the
format will not require changes to programs, since any such changes will be accompanied by
changesin the library to support both the old and new versions of the format.

What does netCDF run on?

The current version of netCDF has been tested successfully on the following platforms:

« AlIX-41

+ HPUX-9.05

* |RIX-5.3

* |RIX64-6.1
 MSDOS (using gcc, f2c, and GNU make)
 OSF1-3.2

e OpenVMS-6.2
« 0S221

« SUNOS4.14
+ SUNOS5.5
 ULTRIX-4.5

* UNICOS-8

e Windows NT-3.51

What other softwareisavailable for netCDF data?

Utilities available in the current netCDF distribution from Unidata are ncdunp, for converting
netCDF datasets to an ASCII human-readable form, and ncgen for converting from the ASCII
human-readable form back to a binary netCDF file or a C or FORTRAN program for generating
the netCDF dataset.

Several commercia and freely available analysis and data visualization packages have been
adapted to access netCDF data. More information about these packages and other software that
can be used to manipulate or display netCDF datais available from

http://ww. uni dat a. ucar. edu/ packages/ net cdf / sof tware. htni .

What other for mats are available for scientific data?

The Scientific Data Format Information FAQ, availablefromhttp: //fits. cv. nrao. edu/traf -
fic/scidataformts/fag. ht n, provides agood description of other access interfaces and for-
mats for array-oriented data, including CDF and HDF.

102

How do | make a bug report?

If you find a bug, send a description to suppor t @ini dat a. ucar . edu. Thisis aso the address to
usefor questions or discussions about netCDF that are not appropriate for the entire net cdf gr oup
mailing list.

How do | search through past problem reports?

A search form is available at the bottom of the netCDF home page providing a full-text search of
the support questions and answers about netCDF provided by Unidata support staff.

How doesthe C++ interface differ from the C interface?

It provides all the functionality of the C interface (except for the mapped array access of

nc_put _var m type and nc_get _var m_type). With the C++ interface (ht t p: / / www. uni -

dat a. ucar . edu/ packages/ net cdf / cxxdoc_t oc. ht i) no IDs are needed for netCDF compo-
nents, there is no need to specify types when creating attributes, and less indirection is required
for dealing with dimensions. However, the C++ interface is less mature and less-widely used than
the C interface, and the documentation for the C++ interface is less extensive, assuming a famil-
iarity with the netCDF data model and the C interface.

How doesthe FORTRAN interface differ from the C interface?

It provides all the functionality of the C interface. The FORTRAN interface uses FORTRAN con-
ventions for array indices, subscript order, and strings. There is no difference in the on-disk for-
mat for data written from the different language interfaces. Datawritten by a C language program
may be read from a FORTRAN program and vice-versa.

How doesthe Fortran 90 interface differ from the C interface?

The Fortran 90 interface provides the same functionality as the FORTRAN and C interfaces, but
the interface is substantially smaller. We've done this by using optional argumentsin thefile,
dimension, variable, and attribute inquire functions (nf 90_1I nqui r e_) and by using overloaded
functions for the reading and writing of variables and attributes.

The Fortran 90 interface is currently implemented as a set of wrappers around the FORTRAN
interface. Because there is almost no copying of information, the performance penalty should be
very small.

The Fortran 90 interface is new as of February 2000, and we would appreciate any user feedback.

How doesthe Perl interface differ from the C interface?

It provides all the functionality of the C interface. The Perl interface (ht t p: / / www. uni -

Chapter 11: Answersto Some Frequently Asked Questions 103

dat a. ucar . edu/ packages/ net cdf - per | /) uses Perl conventionsfor arrays and strings. Thereis
no difference in the on-disk format for data written from the different language interfaces. Data
written by a C language program may be read from a Perl program and vice-versa.

104

Chapter 11: Units 105

Appendix A Units

The Unidata Program Center has developed a units library to convert between formatted and
binary forms of units specifications and perform unit algebra on the binary form. Though the units
library is self-contained and there is no dependency between it and the netCDF library, it is never-
theless useful in writing generic netCDF programs and we suggest you obtain it. The library and
associated documentation is available from ht t p: / / www. uni dat a. ucar . edu/ packages/ udun-
its/.

The following are examples of units strings that can be interpreted by the ut Scan() function of
the Unidata units library:

10 kil ogram net ers/seconds?

10 kg-m sec?2

10 kg m s”2

10 kil ogram neter second-2

(Pl radian)?2

degF

100r pm

geopotential neters

33 feet water

mlliseconds since 1992-12-31 12:34:0.1 -7:00

A unit is specified as an arbitrary product of constants and unit-names raised to arbitrary integral
powers. Division isindicated by aslash ‘/’. Multiplication is indicated by white space, a period
‘.7, or ahyphen ‘- . Exponentiation isindicated by an integer suffix or by the exponentiation
operators‘~’ and ‘**’. Parentheses may be used for grouping and disambiguation. The time stamp
in the last example is handled as a special case.

Arbitrary Galilean transformations (i.e., y = ax + b) are alowed. In particular, temperature con-
versions are correctly handled. The specification:

degF @32

indicates a Fahrenheit scale with the origin shifted to thirty-two degrees Fahrenheit (i.e., to zero
Celsius). Thus, the Celsius scale is equivalent to the following unit:

1.8 degF @32

Note that the origin-shift operation takes precedence over multiplication. In order of increasing
precedence, the operations are division, multiplication, origin-shift, and exponentiation.

ut Scan() understands all the Sl prefixes (e.g. “mega’ and “milli”) plus their abbreviations (e.g.
“M” and “m”)

The function ut Pri nt () aways encodes a unit specification one way. To reduce misunderstand-
ings, it is recommended that this encoding style be used as the default. In general, aunit is
encoded in terms of basic units, factors, and exponents. Basic units are separated by spaces, and

106

any exponent directly appendsits associated unit. The above examples would be encoded as fol-
lows:

10 kil ogram neter second-2

9. 8696044 radi an2

0. 555556 kelvin @ 255.372

10. 471976 radi an second-1

9. 80665 neter2 second-2

98636.5 kil ogram neter-1 second-2

0. 001 seconds since 1992-12-31 19:34:0.1000 UTC

(Note that the Fahrenheit unit is encoded as a deviation, in fractional kelvins, from an origin at
255.372 kelvin, and that the time in the last example has been referenced to UTC.)

The database for the units library is aformatted file containing unit definitions and is used to ini-
tialize this package. It isthefirst place to look to discover the set of valid names and symbols.

The format for the units-file is documented internally and the file may be modified by the user as
necessary. In particular, additional units and constants may be easily added (including variant
gpellings of existing units or constants).

ut Scan() iscase-sengtive. If this causes difficulties, you might try making appropriate additional
entries to the units-file.

Some unit abbreviationsin the default units-file might seem counterintuitive. In particular, note
the following:

For Use Not Which Instead Means
Celsius Celsius C coulomb
gram gram g <standard free fall>
galon galon ga <acceleration>
radian radian rad <absorbed dose>
Newton newton or N nt nit (unit of photometry)

For additional information on this units library, please consult the manual pages that come with
the distribution.

Chapter 11: File Format Specification 107

Appendix B File Format Specification

This appendix specifies the netCDF file format.

The format isfirst presented formally, using a BNF grammar notation. In the grammar, optional
components are enclosed between braces (‘[* and ‘]). Commentsfollow ‘/ /" characters. Nonter-
minalsarein lower case, and terminals are in upper case. A sequence of zero or more occurrences
of an entity aredenoted by ‘[entity .] .

The Format in Detail

netcdf _file := header data

header = magic numrecs dimarray gatt_array var_array

magi ¢ :='C 'D 'F VERSI O\ _BYTE

VERSI ON_BYTE : = '\ 001 /1 the file format version nunber

nunr ecs : = NON_NEG

di m array = ABSENT | NC DI MENSION nelens [dim.]

gatt _array := att_array // global attributes

att _array := ABSENT | NC ATTRIBUTE nelens [attr .]

var_array := ABSENT | NC VAR ABLE nelems [var .]

ABSENT := ZERO ZERO /1 Means array not present (equivalent to
/1 nelenms == 0).

nel ens = NON_NEG /1 nunber of elenments in follow ng sequence

di m = nane dimlength

name := string

dimlength : = NON_NEG /1 1f zero, this is the record dinension.

/1 There can be at nobst one record di nmension.

attr nane nc_type nelens [values]

nc_type := NC BYTE | NC CHAR | NC SHORT | NC_INT | NC FLOAT | NC _DOUBLE
var = nane nelens [dimd .] vatt_array nc_type vsize begin
/1 nelenms is the rank (dinensionality) of the
/] variable; O for scalar, 1 for vector, 2 for
/[l matrix,

108

vatt_array :

dimd

Vsi ze

begi n

dat a

non_recs

recs

rec

val ues
string
byt es
chars
shorts
ints
floats
doubl es :

paddi ng

NON_NEG :

= att_array // variable-specific attributes
NON_NEG /1 Dimension ID (index into dimarray) for
/1 variable shape. W say this is a “record
/1l variable” if and only if the first
/1 dinmension is the record di nension.
= NON_NEG /1l Variable size. |If not a record variable
/1 the anpbunt of space, in bytes, allocated to
/1 that variable s data. This nunber is the
/1 product of the dinmension lengths tinmes the
/1 size of the type, padded to a four byte
/!l boundary. |If a record variable, it is the
/1 amount of space per record. The net CDF
/1 “record size” is calculated as the sum of
/1 the vsize' s of the record vari abl es.
NON_NEG /1l Variable start |ocation. The offset in
/'l bytes (seek index) in the file of the
/1 beginning of data for this variable.
non_recs recs
:= [values .] /! Data for first non-record var, second
/1 non-record var,
[rec .] /1l First record, second record,
[val ues .] /! Data for first record variable for record
/1 n, second record variable for record n
/1 See the note bel ow for a special case.
[bytes] | [chars] | [shorts] | [ints] | [floats] | [doubles]
nel ems [chars]
[BYTE ..] padding
[CHAR .] padding
[SHORT .] padding
[INT .]
[FLOAT .]
[DOUBLE ..]
<0, 1, 2, or 3 bytes to next 4-byte boundary>
/1 1n header, padding is with O bytes. In
/1 data, padding is with variable s fill-val ue.

<INT with non-negative val ue>

Chapter 11: File Format Specification

ZERO D=

BYTE D=

CHAR D=

SHORT

I NT

FLOAT

DOUBLE

<INT with zero val ue>

<8-bit byte>

<8-bit ACSII/ISO encoded character>
<16-bit signed integer, Bigendian
<32-bit signed integer, Bigendian
<32-bit | EEE singl e-precision float

<64-bit | EEE doubl e-precision fl oat

/1l tags are 32-bit |INTs

NC BYTE =1 /1l data is array of
NC_CHAR =2 /1l data is array of
NC_SHORT =3 /!l data is array of
NC | NT =4 /!l data is array of
NC_FLOAT =5 /!l data is array of
NC_DOUBLE =6 /!l data is array of
NC_DI MENSI ON : = 10

NC_VARI ABLE := 11

NC_ATTRI BUTE : = 12

Computing File Offsets

109

two’ s conpl ement >
two’ s conpl ement >
, Bi gendi an>

, Bi gendi an>

8 bit signed integer
characters, i.e., text

16 bit signed integer

32 bit signed integer

| EEE singl e precision float
| EEE doubl e precision float

To calculate the offset (position within the file) of a specified datavalue, let external_sizeof be the
external size in bytes of one data value of the appropriate type for the specified variable, nc_type:

NC_BYTE
NC_CHAR
NC_SHORT
NC_I NT
NC_FLOAT
NC_DOUBLE

©ORABRNPR PR

On acall to NF90_OPEN (or NF9O_ENDDEF), scan through the array of variables, denoted var_array
above, and sum the vsize fields of “record” variablesto compute recsize.

Form the products of the dimension lengths for the variable from right to left, skipping the left-
most (record) dimension for record variables, and storing the results in a product array for each
variable. For example:

Non-record vari abl e:

di mrensi on | engt hs: [5 3 27]
product: [210 42 14 7]

Record vari abl e:

110

di mensi on | engt hs: [0 2 9 4]
product : [0 72 36 4]

At this point, the leftmost product, when rounded up to the next multiple of 4, isthe variable size,
vsize, in the grammar above. For example, in the non-record variable above, the value of the vsize
field is 212 (210 rounded up to amultiple of 4). For the record variable, the value of vsize is just
72, sincethisis aready a multiple of 4.

Let coord be an array of the coordinates of the desired data value, and offset be the desired resullt.
Then offset isjust thefile offset of the first data value of the desired variable (its begin field) added
to the inner product of the coord and product vectors times the size, in bytes, of each datum for
the variable. Finally, if the variable is arecord variable, the product of the record number,
‘coord[0], and the record size, recsize is added to yield the final offset value.

In pseudo-C code, here’s the calculation of offset:
for (innerProduct =i = 0; i < var.rank; i++)
i nner Product += product[i] * coord[i]
of fset = var.begin
of fset += external _sizeof * innerProduct
i f(I'S_RECVAR(var))
of fset += coord[0] * recsize;
So, to get the data value (in external representation):

| seek(fd, offset, SEEK SET);
read(fd, buf, external _sizeof);

A special case: Where there is exactly one record variable, we drop the restriction that each
record be four-byte aligned, so in this case there is no record padding.

Examples

By using the grammar above, we can derive the smallest valid netCDF file, having no dimensions,
no variables, no attributes, and hence, no data. A CDL representation of the empty netCDF fileis

netcdf enmpty { }

This empty netCDF file has 32 bytes, as you may verify by using ‘ncgen -b enpty. cdl’ to gen-
erateit from the CDL representation. It beginswith the four-byte “ magic number” that identifiesit
asanetCDF version 1file: *C’, ‘D, ‘F’, ‘\001'. Following are seven 32-bit integer zeros repre-
senting the number of records, an empty array of dimensions, an empty array of global attributes,
and an empty array of variables.

Below is an (edited) dump of the file produced on a big-endian machine using the Unix command
od -xcs enpty.nc

Each 16-byte portion of the file is displayed with 4 lines. Thefirst line displays the bytesin hexa-

Chapter 11: File Format Specification 111

decimal. The second line displays the bytes as characters. The third line displays each group of
two bytes interpreted as a signed 16-hbit integer. The fourth line (added by human) presents the
interpretation of the bytesin terms of netCDF components and val ues.

4344 4601 0000 0000 0000 0000 0000 0000
C D FO01L \0 \O \0O \O \O0O \O \O0 \O\O \O \O VO
17220 17921 00000 00000 00000 00000 00000 00000
[magic number] [O records] [O dinensions (ABSENT)]

0000 0000 0000 0000 0000 0000 0000 0000
\0 \0 \0 \0 \0 \0O \0O \0O \0O \O0 \O\O \O \O \O \O
00000 00000 00000 00000 00000 00000 00000 00000
[O global atts (ABSENT)] [O variables (ABSENT)]

Asadlightly lesstrivial example, consider the CDL

netcdf tiny {
di mensi ons:
dim= 5;
vari abl es:
short vx(dim;
dat a:
vx =3, 1, 4, 1, 5
}

which corresponds to a 92-byte netCDF file. The following is an edited dump of thisfile:

4344 4601 0000 0000 0000 000a 0000 0001
C D FO001 \0 \O \0 \O \0 \O \0 \n\O \O \O0 001
17220 17921 00000 00000 00000 00010 00000 00001
[magic number] [O records] [NCDIMENSION] [1 dinension]

0000 0003 6469 6d00 0000 0005 0000 0000

\0O \0 \0 003 d [m \0 \0 \0 \0 005\0 \0 \0 \O
00000 00003 25705 27904 00000 00005 00000 00000
[3 char nane = "dint] [size =5] [O global atts

0000 0000 0000 000b 0000 0001 0000 0002
\0 \0 \0O \0 \0O \0 \0 013 \0 \0 \0 001 \0 \0O \O 002

00000 00000 00000 00011 00000 00001 00000 00002
(ABSENT)] [NCVARIABLE] [1 variable] [2 char nane =

7678 0000 0000 0001 0000 0000 0000 0000
v x \0 \0 \0O \0 \0 001 \0O \0 \0O \O0O\O \O0O \O \O

30328 00000 00000 00001 00000 00000 00000 00000
"vx"] [1 dimension] [with IDO] [O attributes

0000 0000 0000 0003 0000 000c 0000 0050
\0O \0 \0O \0 \O0 \0 \0 003 \O \O0O \O\f \O \O \O P
00000 00000 00000 00003 00000 00012 00000 00080
(ABSENT)] [type NC SHORT] [size 12 bytes] [offset: 80]

0003 0001 0004 0001 0005 8001

112

\0 003 \0 001 \0 004 \0 001 \O 005 200 001
00003 00001 00004 00001 00005 -32767

[3] [11 1 4] [11 1 5] [fill]

Chapter 11: Summary of Fortran 90 Interface 113

Appendix C Summary of Fortran 90
| nterface

Dat aset Functi ons

function nf90_ing_libvers()
character(len = 80) :: nf90_inqg_libvers

function nf90_strerror(ncerr)
integer, intent(in) :: ncerr
character(len = 80) :: nf90_strerror

function nf90_create(path, cnode, ncid)

character (len = *), intent(in) :: path

i nt eger, intent(in) :: cnode

i nteger, optional, intent(in) :: initialsize
i nteger, optional, intent(inout) :: chunksize

i nt eger, intent(out) :: ncid

i nt eger .. nf90 _create

function nf90_open(path, node, ncid, chunksize)

character (len = *), intent(in) :: path
i nt eger, intent(in) :: node
i nt eger, intent(out) :: ncid
i nteger, optional, intent(inout) :: chunksize
i nt eger :: nf90_open

function nf90 _set fill(ncid, fillnode, old_node)

integer, intent(in) :: ncid, fillnode
i nteger, intent(out) :: old_node
i nt eger .. nf90_set fil

function nf90_redef(ncid)
integer, intent(in) :: ncid
i nt eger .. nf90_redef

function nf90_enddef(ncid, h_mnfree, v_align, v_mnfree, r_align)

i nt eger, intent(in) :: ncid
i nteger, optional, intent(in) :: h_mnfree, v_align, v_mnfree, r_align
i nt eger ;. nf90_enddef

function nf90_sync(ncid)
integer, intent(in) :: ncid
i nt eger ;. nf90_sync

function nf90_abort (ncid)
integer, intent(in) :: ncid
i nt eger ;. nf90_abort

function nf90_cl ose(ncid)
integer, intent(in) :: ncid

114

i nt eger .. nf90_cl ose

function nf90_I nquire(ncid, nDinmensions, nVariables, nAttributes, &
unlimtedD m d)
i nt eger, intent(in) :: ncid

i nteger, optional, intent(out) :: nDi nmensions, nVariables, nAttributes, &

unlimtedD md
i nt eger :: nf90_Inquire

Di nensi on functions

function nf90_def _dimncid, name, len, dimnd)

i nt eger, intent(in) :: ncid

character (len = *), intent(in) :: name

i nt eger, intent(in) :: len

i nt eger, intent(out) :: dimd

i nt eger .. nf90_def _dim
function nf90_ing_di md(ncid, nane, dimd)

i nt eger, intent(in) :: ncid

character (len = *), intent(in) :: name

i nt eger, intent(out) :: dimd

i nt eger :: nf90_ing_dimd
function nf90_Inquire_Di nension(ncid, dimd, nanme, |en)

i nt eger, intent(in) :: ncid, dimd

character (len = *), optional, intent(out) :: nane

i nt eger, optional, intent(out) :: len

i nt eger :: nf90_I nquire_Di nension

function nf90_renane_di mncid, dinmd, name)

i nt eger, intent(in) :: ncid

character (len = *), intent(in) :: name

i nt eger, intent(in) :: dimd

i nt eger ;. nf90_renane_di m

Vari abl e functions

function nf90_def _var(ncid, name, xtype, dimds, varid)

i nt eger, intent(in) :: ncid

character (len = *), intent(in) :: name

i nt eger, intent(in) :: xtype

i nteger, dinension(:), intent(in) :: dimds ! May be ontted, scalar

I vector

i nt eger ;. nf90_def var
function nf90_ing_varid(ncid, nane, varid)

i nt eger, intent(in) :: ncid

character (len = *), intent(in) :: name

i nt eger, intent(out) :: varid

i nt eger :: nf90_ing_varid

function nf90_Inquire_Variabl e(ncid, varid, name, xtype, ndinms, &
di mds, nAtts)

Chapter 11: Summary of Fortran 90 Interface

i nt eger, intent(in) ncid, varid

character (len = *), optional, intent(out) namne

i nt eger, optional, intent(out) xtype, ndims

i nteger, dinmension(*), optional, intent(out) di m ds

i nt eger, optional, intent(out) nAtts

i nt eger nf 90 _I nquire_Vari abl e
function nf90_ put_var(ncid, varid, values, start, stride, nap)

i nt eger, intent(in) ncid, varid

any valid type, scalar or array of any rank, &

intent(in) val ues

i nteger, dinmension(:), optional, intent(in) start, count, stride,

i nt eger nf 90_put _var
function nf90 _get _var(ncid, varid, values, start, stride, nap)

i nt eger, intent(in) ncid, varid

any valid type, scalar or array of any rank, &

i ntent (out) val ues

i nteger, dinmension(:), optional, intent(in) start, count, stride,

i nt eger nf 90_get var
function nf90_renanme_var(ncid, varid, newnane)

i nt eger, intent(in) ncid, varid

character (len = *), intent(in) newnane

i nt eger nf 90_r enane_var

Attribute functions

function nf90_Inquire_Attribute(ncid, varid, name, xtype, len, attnum

i nt eger, intent(in) ncid, varid

character (len = *), intent(in) namne

i nt eger, i ntent (out), optional xtype, len, attnum

i nt eger nf90 I nquire_Attribute
function nf90_ing_attname(ncid, varid, attnum namne)

i nt eger, intent(in) ncid, varid, attnum

character (len = *), intent(out) namne

i nt eger nf 90_i nq_att name
function nf90_put_att(ncid, varid, nane, val ues)

i nt eger, intent(in) ncid, varid

character(len = *), intent(in) namne

any valid type, scalar or array of rank 1, &

intent(in) val ues

i nt eger nf 90 put _att
function nf90 _get _att(ncid, varid, nane, val ues)

i nt eger, intent(in) ncid, varid

character(len = *), intent(in) namne

any valid type, scalar or array of rank 1, &

i ntent (out) val ues

i nt eger

nf 90 _get att

115

map

map

116

function nf90 _copy_att(ncid_in, varid_in, name, ncid_out,

i nt eger, intent(in) :: ncid_in, wvarid_.in

character (len = *), intent(in) :: name

i nt eger, intent(in) :: ncid_out, varid_out

i nt eger :: nf90_copy_att
function nf90 _renane_att(ncid, varid, curname, newnane)

i nt eger, intent(in) :: ncid, wvarid

character (len = *), intent(in) :: curnane, newname

i nt eger .. nf90_renane_att

function nf90_del _att(ncid, varid, nane)
i nt eger, intent(in) :: ncid, varid
character (len = *), intent(in) :: name
i nt eger ;. nf90_del _att

vari d_out)

Chapter 11: FORTRAN 77 to Fortran 90 Transition Guide 117

Appendix D FORTRAN 77 to Fortran 90
Transition Guide

The new Fortran 90 interface

The Fortran 90 interface to the netCDF library closely follows the FORTRAN 77 interface. In most
cases, function and constant names and argument lists are the same, except that nf 90_ replaces
nf _ in names. The Fortran 90 interface is much smaller than the FORTRAN 77 interface, however.
This has been accomplished by using optional arguments and overloaded functions wherever pos-
sible.

Because FORTRAN 77 isasubset of Fortran 90, there is no reason to modify working FORTRAN
code to use the Fortran 90 interface. New code, however, can easily be patterned after existing
FORTRAN while taking advantage of the simpler interface. Some compilers may provide additional
support when using Fortran 90. For example, compilers may issue warnings if arguments with

i ntent (in) arenot set before they are passed to a procedure.

The Fortran 90 interface is currently implemented as a set of wrappers around the base FORTRAN
subroutines in the netCDF distribution. Future versions may be implemented entirely in Fortran
90, adding additional error checking possibilities.

Changesto Inquiry functions

In the Fortran 90 interface there are two inquiry functions each for dimensions, variables, and
attributes, and a single inquiry function for datasets. These functions take optional arguments,
allowing usersto request only the information they need. These functions replace the many-argu-
ment and single-argument inquiry functions in the FORTRAN interface.

As an example, compare the attribute inquiry functions in the Fortran 90 interface

function nf90 Inquire Attribute(ncid, varid, name, xtype, len, attnum

i nteger, intent(in) . ncid, varid

character (len = *), intent(in) . nane

i nteger, intent(out), optional :: xtype, len, attnum

i nt eger .. nf90 Inquire Attribute
function nf90_inqg_attnane(ncid, varid, attnum nane)

i nteger, intent(in) :: ncid, varid, attnum

character (len = *), intent(out) :: nane

i nt eger ;. nf90_ing_attnane

with those in the FORTRAN interface

| NTEGER FUNCTI ON NF_I NQ ATT (NCI D, VAR D, NAMVE, xtype, |en)
| NTEGER FUNCTI ON NF_I NQ ATTI D (NCI D, VAR D, NAME, attnum
I NTEGER FUNCTI ON NF_INQ ATTTYPE (NCID, VARI D, NAME, xtype)

118

I NTEGER FUNCTI ON NF_I NQ _ATTLEN (NCI D, VARI D, NAME, |en)
I NTEGER FUNCTI ON NF_I NQ_ATTNAME (NCI D, VARID, ATTNUM nane)

Changesto put and get function

The biggest ssmplification in the Fortran 90 isinthenf 90_put _var and nf 90_get _var functions.
Both functions are overloaded: the val ues argument can be a scalar or an array any rank (7 isthe
maximum rank allowed by Fortran 90), and may be of any numeric type or the default character
type. The netCDF library provides transparent conversion between the external representation of
the data and the desired internal representation.

Thestart, count, stride, and map argumentsto nf 90_put _var and nf 90_get _var are
optional. By default, datais read from or written to consecutive values of starting at the origin of
the netCDF variable; the shape of the argument determines how many values are read from or
written to each dimension. Any or all of these arguments may be supplied to override the default
behavior.

Note also that Fortran 90 allows arbitrary array sectionsto be passed to any procedure, which may
greatly simplify programming. See Section 7.5 “Writing Data Values: NFOO_PUT_VAR;”
page 56, and Section 7.6 “Reading Data Values: NFOO_GET_VAR,” page 61, for examples.

| ndex for Fortran 90

Symbols

_Fillvalue 67
_Fi Il Val ue attribute 71
90 MAX_ VAR _DIMS 55
90 SHARE 33
abnormal termination 24
aborting
define mode 27
definitions 40
access
example of array section 17
other software for scientific data 101
random 16
shared dataset 85, 99
access to netCDF distribution
FTP 99
WWW 99
add_of f set attribute 71
adding
attributes 27, 34
dimensions 27, 34
variables 27, 34
ancillary data 13, 14
APIs
descriptions 29
differences between C and C++ 102
differences between C and FORTRAN 102
summary of Fortran90 113
appending data
along unlimited dimension 10
to
dataset 99
variable 51
applications, generic 13, 14, 24, 45, 69, 72, 74
archive format 3
array section
access example 17
corner of 17
definition of 17
edges of 17
mapped 17
subsampled 17
arrays
nested 7
ragged 6

ASCII characters 15
attribute 13, 25, 69
_Fillvalue 71
add_of fset 71
adding 27, 34
CDL 90
defining 13
global 90
initializing 92
changing specifications of 69
character-string 66
Conventions 72
conventions 13, 14, 69
copying 77
creating 72
datatype 13, 69, 75
datatype, CDL 92
deleting 27, 74, 80
ensuring changesto 24
example, global 14
FORTRAN_f or mat 72
getting values 76
global 13, 69
history 72
ID 74
length 13, 66, 69, 75
CDL 92
I ong_nane 70
m ssing_val ue 71
name syntax 9
operations 69
renaming 27, 79
scal e_factor 70
si gnedness 71
title72
uni ts 14, 70, 105
val i d_max 70
valid_min 70
val i d_range 70
values 69, 76
variable ID 75
vs. variable 14
attributes associated with avariable 11
audit 72
backing out of definitions 40
bit lengths of datatypes 51
buffers, 1/0O 86

120

bug reports
making 102
searching past 102
byte
vs. character 67
byt e
CDL
constant 92
datatype 11, 91
datatype 15
C codeviancgen, generating 93
C interface vii
differences from C++ 102
differences from FORTRAN 102
C++ interface vii
differences from C 102
call sequence, typical 23
canceling definitions 40
CANDIS 4
CDF
NASA 3
NSSDC 3
SeaSpace 4
Unidata Workshop 4
CDL 9, 93
attribute 90
datatype 92
defining 13
initializing 92
length 92
byte constant 92
byt e datatype 11, 91
char datatype 11
character constant 92
constant notation 92
datatypes 11
table of 91
dimension 90
doubl e
constant 93
datatype 11, 93
example 9, 89
file, data section of 90
fill values 91
fl oat
constant 93
datatype 11, 93
global attribute 90
int
constant 93
datatype 11
| ong datatype 11
names 90
notation 10
real datatype 11

reserved words 16
short
constant 92
datatype 11
syntax 89
variable
initializing 90
variables 90
declaration 11
changes
since last release 5, 100
to attributes, ensuring 24
changing dimension length 6
char datatype 15, 91
CDL 11
character string 66
attribute 66
CDL constant 92
fixed-length 66
reading 66
writing 66
character-position dimension 66
characters
ASCII 15
vs. byte 67
closing adataset 24, 37, 40
code
compiling netCDF-using 28
generating viancgen 93
commercia netCDF software 101
common netCDF call sequence 23
compiling and linking 28
compiling netCDF-using code 28
compression, data 6, 71
computers, CRAY 86
computing file offsets of data 109
concurrent dataset access 39, 85, 99
limitations of 6
conditions, error 29
constant, CDL 92
byt e 92
character 92
doubl e 93
float 93
int 93
short 92
conventions
attribute 13, 14, 69
discipline-specific 72
example 29
name 9
netCDF 3
uni t s syntax 105
Convent i ons attribute 72

converting
floating-point values, cost of 84
units 105
coordinate
offset vector 19
systems, defining 12
variable 12, 90
coordinate variables 12
copying attributes 77
corner of array section 17
correspondence
between data types and data 51
cost of converting floating-point values 84
count vector 17
CRAY computers 86
Flexible File I/O 86
Flexible File1/O library 87
1/O, optimizing 86
creating
attribute 72
dataset 23, 31, 40
dimension 45
netCDF file 93
variable 52
data
access, other software for 101
ancillary 13, 14
compression 6, 71

correspondence between data types and 51

file offsets of 109

history, recording 72

loss 24

mode 27, 35, 39, 40, 69

model limitations 6

order 18

packing 6, 71

portability vii, 99

range, valid 70

reading 66
character-string 66

representation, external 2

resolution 71

scaling 70

section of CDL file 90

section, netCDF file fixed-size 83

self-describing vii

storage 9

structures 20

structures, nested 6

values, variable 11

writing 66
character-string 66

data mode 23, 27
datatype 11

and data, correspondence between 51

attribute 13, 69, 75

bit length of 51

byt e 15

CDL 11

CDL attribute 92

CDL byte 11, 91

CDL char 11

CDL doubl e 11, 93

CDL fl oat 11, 93

CDLint 11

CDL I ong (deprecated) 11

CDLreal 11

CDL short 11

CDL, table of 91

char 15, 91

doubl e 15, 92

externa 15

fl oat 15,91

getting variable 54

int 15,91

netCDF 15, 66

NF90 BYTE 11

NF90_CHAR 11

NF90_DOUBLE 11

NF90_ FLOAT 11

NF90 | NT 11

NF9O0 | NT1 11

NF90 | NT2 11

NF90 | NT4 11

NF90 REAL 11

NF90_ REALS 11

NF90_SHORT 11

short 15, 91

signed byte 16

sizes 51

unsi gned byte 16

variable 11, 51
database

management systems 1

systems, relational 1
dataset

appending datato 99

closing 24, 37, 40

creating 23, 40

deleting 40

generating viancgen 93

ID 16

inquiring about 38

opening netCDF 24, 33

operations 40

reading netCDF 24

shared, access 39, 85, 99

synchronizing 39

121

122

declaration, CDL variable 11
default
error handling 28
fill values 67
define mode 23, 27, 40, 45, 53, 69
aborting 27
entering 34
leaving 35
defining
attribute 72
CDL attributes 13
coordinate systems 12
dimension 45
variable 52
definition
aborting 40
backing out of 40
of array section 17
restoring old 27
deleting
attribute 27, 74, 80
dataset 40
deprecated feature
CDL | ong datatype 11
development, netCDF 3
dimension 10, 13, 24, 25, 45
adding 27, 34
CDL 90
character-position 66
creating 45
ID 24, 25, 45, 46, 47, 53
getting 46
unlimited 38
information, getting 47
inquiring about 47
length 10, 45, 47
changing 6
getting 47
multiple unlimited 7
name 10, 45, 46, 47, 48, 49
getting 47
syntax 9
number of
maximum 45, 53
variable 53, 55
record 10, 11, 45, 47, 51
renaming 27, 34, 49
unlimited 10, 11, 45, 47, 51
direct access 16, 99
discipline-specific conventions 72
distribution
FTP accessto netCDF 99
netCDF source 99
WWW access to netCDF 99

documentation, HTML version of vii
doubl e
CDL
constant 93
datatype 11, 93
datatype 15, 92
edge
of array section 17
efficiency 2, 24, 39, 83
empty netCDF file 110
ensuring changes to attributes 24
entering define mode 34
environment variable, NETCDF_FFIOSPEC 86
error
conditions 29
handling 28
default 28
messages 28
getting 30
suppressing 28
returns 28
write 28
example
array section access 17
CDL 9, 89
conventions 29
fileformat 110
global attribute 14
extension, netCDF file 93
external data
representation 2
types 15
FAQ 99
FFIO library, CRAY 87
file
data section, CDL 90
empty 110
extension, netCDF 93
fixed-size data section 83
format 83, 100
example 110
specification 107
version 107
generating 93
grammar 107
header section 83
name 29
offsets of data 109
sections 83
size 6, 66, 83
limitation 6
smallest 110
structure 83, 100
File Array Notation 5
Filel/Olibrary, CRAY Flexible 87

filesize limits 84
fill mode, setting write 41
fill values 67, 71, 91
CDL 91
default 67
_Fi 'l val ue attribute 71
fixed-length character-strings 66
fixed-size data section, netCDF file 83
Fexible File1/O library, CRAY 87
fl oat
CDL
constant 93
datatype 11, 93
datatype 15, 91
floating-point
IEEE 2, 15
values, converting 84
flushing 86
format 83, 100
archive 3
example, file 110
physical 100
specification 107
version 107
FORTRAN
and C interfaces, differences between 102
codeviancgen, generating 93
interface vii
FORTRAN f or mat attribute 72
Fortran90 interface
summary of 113
freely available netCDF software 101
frequently asked questions 99
FTP access to netCDF distribution 99
generating
C codeviancgen 93
dataset 93
file 93
FORTRAN codeviancgen 93
generating code viancgen
C93
FORTRAN 93
generic applications 13, 14, 24, 45, 69, 72, 74
getting
attribute
values 76
character-string data 66
data 66
dataset information 38
dimension
ID 46
information 47
length 47
name 47

error messages 30
library version 30
netCDF software 99
variable
datatype 54
ID 54
information 54
name 54
shape 54
global
atribute 13, 69
CDL 90
example 14
global attributes
number of 55
grammar, netCDF file 107
grouping variables 21
handle 29
HANDLE_ERR 30
handling
error 28
default 28
HDF vi
header section, netCDF file 83
history
data, recording 72
of interface 3
hi st ory attribute 72
home page vii
HTML documentation vii
110
buffers 86
CRAY, optimizing 86
library, CRAY FFIO 87

attribute 74
variable 75
dataset 16
dimension 24, 25, 45, 46, 47, 53
getting 46
unlimited 38
netCDF 16, 29, 37
variable 16, 25, 51
ID, getting
variable 54
| EEE floating-point 2, 15
implementation 45
index
order 18
variables 20
index mapping vector 17, 18, 19, 51
index vector 17
indexing values 20
information, getting
on dataset 38

123

124

on dimension 47
on variable 54
initializing
CDL attributes 92
CDL variables 90
inner product 19
inquire functions 25
inquiring about
dataset 38
dimension 47
variable 54
i nt
CDL
constant 93
datatype 11
datatype 15, 91
interface 29
Cvii
differences from C++ 102
differences from FORTRAN 102
C++ vii
descriptions 29
FORTRAN vii
Fortran90
summary of 113
history 3
Perl vii, 100, 102
interval, sampling 17
known names 24
languages
compatibility of interfaces 18
supported 1
Large File Support 84
largest filesize 6
leaving define mode 35
length
attribute 13, 66, 69, 75
CDL attribute 92
data type bit 51
dimension 10, 45, 47
changing 6
getting 47
maximum name 55
variable 12
level of support vi
LFS 84
library
CRAY FFIO 87
linking with netCDF 28
UDUNI TS 105
use 23
version, getting 30
limitation
concurrent access 6

datamodel 6
filesize 6
netCDF 5
unlimited dimension 6
linked lists 20
linking and compiling 28
linking with netCDF library 28
list
linked 20
mailing 100
| ong CDL datatype (deprecated) 11
| ong_nane attribute 70
loss, data 24
mailing list 100
mapped array section 17
mapping vector, index 17, 18, 19, 51
matrices, sparse 20
maximum
attributes per variable 73
dimensions 45, 53
name length 55
records 47
variable dimensions 53, 55
variables 53
messages
error 28
getting 30
suppressing 28
metadata 13, 14
missing values 67, 70, 71
m ssi ng_val ue attribute 71
mode
data 27, 35, 39, 40, 69
define 27, 40, 45, 53, 69
aborting 27
entering 34
leaving 35
write fill, setting 41
model limitations, data 6
multiple unlimited dimensions 7
multiple writers 6
name
attribute 69
CDL 90
conventions 9
dimension 10, 45, 46, 47, 48, 49
getting 47
known 24
length, maximum 55
netCDF file 29
syntax
atribute 9
dimension 9
variable 9

variable, getting 54
NASA CDF 3
ncdunp 94
ncgen 93
generating C code via 93
generating FORTRAN code via 93
NCSA vi
NE90_CL OSE example 37
nested arrays 7
nested data structures 6
netCDF 1, 10
call sequence, typical 23
conventions 3
data types 15, 66
dataset
opening a 24, 33
reading a 24
dataset, generating a 93
development 3
distribution
FTP accessto 99
WWW accessto 99
file
empty 110
extension 93
fixed-size data section 83
format 83, 100
specification 107
version 107
generating a 93
grammar 107
header 83
largest 6
name 29
sections 83
size 66, 83
smallest 110
structure of a 100
handle 29
home page, WWW vii
ID 16, 29, 37
implementation 45
interface history 3
library use 23
library, linking with 28
limitations 5
operations 29
purpose vii
software
commercia 101
freely available 101
getting 99
usage 100
WWW site vii
netcdf.MOD 28

NETCDF_FFI OSPEC 86

NETCDF_FFIOSPEC environment variable 86
netCDF-using code, compiling 28

NF90_ABORT 27, 40
NF90_ABORT example 41
NF90_ALI GN_CHUNK 36
NF90_BYTE 52
NF90_BYTE datatype 11
NF90_CHAR 52
NF90_CHAR data type 11
NF90_CLOBBER 32

NF90_CLOSE 23, 24, 25, 26, 27, 37

NF90_COPY _ATT 77
NF90_COPY_ATT example 78
NF90_CREATE 23, 31
NF90_DEF DI M23, 27, 45
NF90_DEF_DI Mexample 46
NF90_DEF_ VAR 23, 27, 52
NF90_DEF_VAR example 53
NF90_DEL_ATT 80
NFOO_DEL_ATT example 81
NF90_DOUBLE 52
NF90_DOUBLE datatype 11
NF90_EEXI ST 32
NF90_ENDDEF 27, 84
NF90_ENDDEF example 36
NF90_ENDDEF. 23
NF90_ENDEF 23

NF90_FI LL 42

NF90_FI LL_BYTE 67
NF90_FI LL_CHAR 67
NF90_FI LL_DOUBLE 67
NF90_FI LL_FLOAT 67
NF90_FI LL_I NT 67
NF90_FI LL_I NT1 67
NF90_FI LL_I NT2 67
NF90_FI LL_REAL 67
NF90_FI LL_SHORT 67
NF90_FLQOAT 52
NF90_FLQOAT datatype 11
NF90_GET_ATT 24, 25, 26, 76
NFOO_GET_ATT example 77
NF90_GET_VAR 24, 25, 26, 61
NF90_GET_VAR example 63
NF90_GLOBAL 69, 75

NF90_| NQ ATTNAME 25, 69, 74, 75

NF90_i nq_at t nane 74
NF90_I NQ DI Mexample 48
NF90_| NQ DI M D 24, 46
NF90_I NQ DI M D example 47
NF90_| NQ LI BVERS 30
NF90_| NQ VARI D 24, 26, 54
NF90_I nqui re 25, 38
NFO0_I nquire_Att 74,76

126

NF90_I nqui re_Att example 75
NFO0_I nquire_Attribute 25,74, 75
NF90_I nqui r e_Di nensi on 25, 47
NF90_I nqui re_Vari abl e 25, 54, 75
NF90_I nqui re_Vari abl e example 55
NF90_| NT 52
NF90_I NT datatype 11
NF90_I NT1 datatype 11
NF90_I NT2 datatype 11
NF90_I NT4 datatype 11
NF90_MAX_ATTRS 73
NF90_MAX_ DI Vs 45
NF90_MAX_ NAME 48, 55
NF90_MAX_ VARS 53
NF90_NOCLOBBER 32
NF90_NCERR 38
NF90_NOFI LL 41, 42
NF90_NOWRI TE 33
NF90_OPEN 24, 25, 26, 27, 33
NF90_OPEN example 34
NF90_PUT ATT 23, 26, 27, 72
example 73
NF90_PUT_VAR 23, 24, 26, 27, 56
NF90_PUT_VAR example 58
NF90_REAL datatype 11
NF90_REALS8 datatype 11
NF90_REDEF 27, 34, 84
NF90_REDEF example 35
NF90 RENANME ATT 79
NF90_RENANE_ATT example 80
NF90 RENANME DI M49
NF90 RENAME VAR 67
NF90_RENAVE_VAR example 68
NF90_SET FILL 41, 71
NF90_SET_FI LL example 43
NF90_SHARE 24, 27, 32, 39, 86
NF90_SHORT 52
NF90_SHORT data type 11
NF90_SI ZEHI NT_DEFAULT 32, 34
NF90_STRERRCR 28, 30
NF90_SYNC 24, 27, 39, 84
NF90_SYNC example 40
NF90_UNLI M TED 46
NF90_WRI TE 33
notation
CDL 10
constant 92
NSSDC CDF 3
number
of dimensions
maximum 45, 53
of records
maximum 47
written 47

of variable dimensions, maximum 53, 55

obtaining netCDF software 99
offset
to data, file 109
tovariable, file 83
vector, coordinate 19
old definitions, restoring 27
opening a dataset 24, 33
operating systems 101
operations
attribute 69
dataset 40
netCDF 29
variable 51
optimization
platform-specific 86
UNICOS 86
order
data 18
index 18
subscript 18
packing, data 6, 71
parts, netCDF file 83
performance 2, 25, 39, 83
Perl interface vii, 100, 102
physical file format 100
platforms 101
platform-specific optimization 86
pointers 20
portability 1, 86, 101
data vii, 99
primary variables 12
problem reports, searching past 102
product, inner 19
purpose, netCDF vii
putting
character-string data 66
data 66
ragged arrays 6
random access 16
range, valid data 70
reading
data 66

character-string 66
netCDF dataset 24
real CDL datatype 11
record 45, 47
dimension 10, 11, 45, 47, 51
maximum number of 47
sizes, variable 6
variables 10, 12
written, number of 47
record dimension 18, 45
record variable 18

record variables 12, 36
recording data history 72
relational database systems 1
removing attributes 80
renaming

attributes 27, 79

dimensions 27, 34, 49

variables 27, 67
reports, bug

making 102

searching archives 102
representation, external data 2
reserved words, CDL 16
resolution, data 71
restoring old definitions 27
returns, error 28
sampling interval 17

array section 17
scalar variables 11
scal e_fact or attribute 70
scaling, data 70

scientific data access, other software for 101
searching past problem reports 102

SeaSpace CDF 4
section
array
corner 17
definition 17
edges 17
mapped 17
subsampled 17
array, access example 17
CDL file data 90
fixed-size data 83
netCDF file 83
self-describing data vii
setting write fill mode 41
shape
getting variable 54
variable 11, 51
shared dataset access 39, 85, 99
short
CDL
constant 92
datatype 11
datatype 15, 91
signed 71
si gned byt e datatype 16
si gnedness attribute 71
size
data type bit 51
largest file 6
limitation, file 6
netCDF file 66, 83

smallest file 110
variable record 6
smallest netCDF file 110

software
commercial 101
freely available 101
getting 99

software for scientific data access 101

source distribution 99
space required for attribute 69
sparse matrices 20
specification, file format 107
stdio 85
storage, data 9
stride vector 17, 51
stride, array section 17
string
character 66
fixed-length 66
variable-length 66
writing 66
structure
data 20
file 83, 100
structures
data
nested 6
subsampled array section 17
subscript order 18
summary
of Fortran90 interface 113
support, level of vi
supported languages 1
suppressing error messages 28
symbol table, variable 9
synchronizing a dataset 39
syntax
CDL 89
conventions, uni t s 105
name
attribute 9
dimension 9
variable 9
table
CDL datatypes 91
variable symbol 9
Terascan 4
termination
abnormal 24
termination, abnormal 24
title atribute 72
trees 20
typical netCDF call sequence 23
UDUNI TS library 105

128

UNICOS optimization 86
units 105
and attributes 14
and variables 14
converting 105
syntax conventions 105
units
attribute 70
unlimited dimension 10, 11, 45, 47, 51
appending data along 10
ID 38
limitation 6
multiple 7
unlimited length dimension 45
unsi gned 71
unsi gned byt e datatype 16
usage, netCDF 100
use, netCDF library 23
utilities 101
utilities, netCDF 101
valid datarange 70
val i d_max attribute 70
val i d_mi n attribute 70
val i d_r ange attribute 70
value
attribute 69, 76
getting 76
CDL fill 91
fill 67, 71, 91
default 67
floating-point, converting 84
indexing 20
missing 67, 70, 71
variable 11, 51
variable 11
adding 27, 34
appending datato 51
attributes 11
CDL 90
CDL initiaizing 90
characteristics 51
coordinate 12, 90
creating 52
datatype 11, 51
datatype, getting 54
declarations, CDL 11

dimensions, maximum number of 53, 55

file offset to 83

grouping 21

ID 16, 25, 51
attribute 75

ID, getting 54

index 20

information, getting 54

inquiring about 54
length 12
name
getting 54
syntax 9
operations 51
primary 12
record 10, 12
record sizes 6
renaming 27, 34, 67
scalar 11
shape 11, 51
getting 54
symbol table 9
values 11, 51
vs. atribute 14
variable dimensions, maximum 53
variable-length strings 66
variables
coordinate 12
vector
coordinate offset 19
count 17
index 17
index mapping 17, 18, 19, 51
stride 17, 51
version
library, getting 30
netCDF file format 107
very largefiles 84
Web, see WWW
Workshop, CDF 4
write errors 28
write fill mode, setting 41
writers, multiple 6
writing
character-string data 66
data 66
WWW
access to netCDF distribution 99
netCDF home page vii
XDR 2, 4, 20, 84

129

130

131

132

133

134

135

136

	NetCDF User’s Guide for Fortran 90
	1 Introduction 1
	2 Components of a NetCDF Dataset 9
	3 Data 15
	4 Use of the NetCDF Library 23
	5 Datasets 29
	6 Dimensions 45
	7 Variables 51
	8 Attributes 69
	9 NetCDF File Structure and Performance 83
	10 NetCDF Utilities 89
	11 Answers to Some Frequently Asked Questions 99
	Appendix A Units 105
	Appendix B File Format Specification 107
	Appendix C Summary of Fortran 90 Interface 113
	Appendix D FORTRAN 77 to Fortran 90 Transition Guide 117
	Index for Fortran 90 119

	Foreword
	Summary
	1 Introduction
	1.1 The NetCDF Interface
	1.2 NetCDF Is Not a Database Management System
	1.3 File Format
	1.4 What about Performance?
	1.5 Is NetCDF a Good Archive Format?
	1.6 Creating Self-Describing Data conforming to Conventions
	1.7 Background and Evolution of the NetCDF Interface
	1.8 What’s New Since the Previous Release?
	1.9 Limitations of NetCDF
	1.10 Future Plans for NetCDF

	2 Components of a NetCDF Dataset
	2.1 The NetCDF Data Model
	2.1.1 Naming Conventions
	2.1.2 Network Common Data Form Language (CDL)

	2.2 Dimensions
	2.3 Variables
	2.3.1 Coordinate Variables

	2.4 Attributes
	2.5 Differences between Attributes and Variables

	3 Data
	3.1 NetCDF external data types
	3.2 Data Access
	3.2.1 Forms of Data Access
	3.2.2 An Example of Array-Section Access
	3.2.3 More on General Array Section Access

	3.3 Type Conversion
	3.4 Data Structures

	4 Use of the NetCDF Library
	4.1 Creating a NetCDF Dataset
	4.2 Reading a NetCDF Dataset with Known Names
	4.3 Reading a netCDF Dataset with Unknown Names
	4.4 Writing Data in an Existing NetCDF Dataset
	4.5 Adding New Dimensions, Variables, Attributes
	4.6 Error Handling
	4.7 Compiling and Linking with the NetCDF Library

	5 Datasets
	5.1 NetCDF Library Interface Descriptions
	5.2 Get error message corresponding to error status: NF90_STRERROR
	5.3 Get netCDF library version: NF90_INQ_LIBVERS
	5.4 Create a NetCDF dataset: NF90_CREATE
	5.5 Open a NetCDF Dataset for Access: NF90_OPEN
	5.6 Put Open NetCDF Dataset into Define Mode: NF90_REDEF
	5.7 Leave Define Mode: NF90_ENDDEF
	5.8 Close an Open NetCDF Dataset: NF90_CLOSE
	5.9 Inquire about an Open NetCDF Dataset: NF90_Inquire
	5.10 Synchronize an Open NetCDF Dataset to Disk: NF90_SYNC
	5.11 Back Out of Recent Definitions: NF90_ABORT
	5.12 Set Fill Mode for Writes: NF90_SET_FILL

	6 Dimensions
	6.1 Create a Dimension: NF90_DEF_DIM
	6.2 Get a Dimension ID from Its Name: NF90_INQ_DIMID
	6.3 Inquire about a Dimension: NF90_Inquire_Dimension
	6.4 Rename a Dimension: NF90_RENAME_DIM

	7 Variables
	7.1 Language Types Corresponding to NetCDF External Data Types
	7.2 Create a Variable: NF90_DEF_VAR
	7.3 Get a Variable ID from Its Name: NF90_INQ_VARID
	7.4 Get Information about a Variable from Its ID: NF90_Inquire_Variable
	7.5 Writing Data Values: NF90_PUT_VAR
	7.6 Reading Data Values: NF90_GET_VAR
	7.7 Reading and Writing Character String Values
	7.8 Fill Values
	7.9 Rename a Variable: NF90_RENAME_VAR

	8 Attributes
	8.1 Attribute Conventions
	8.2 Create an Attribute: NF90_PUT_ATT
	8.3 Get Information about an Attribute: NF90_Inquire_Att and NF90_INQ_ATTNAME
	8.4 Get Attribute’s Values: NF90_GET_ATT
	8.5 Copy Attribute from One NetCDF to Another: NF90_COPY_ATT
	8.6 Rename an Attribute: NF90_RENAME_ATT
	8.7 Delete an Attribute: NF90_DEL_ATT

	9 NetCDF File Structure and Performance
	9.1 Parts of a NetCDF File
	9.2 The Extended XDR Layer
	9.3 Large File Support
	9.4 The I/O Layer
	9.5 UNICOS Optimization

	10 NetCDF Utilities
	10.1 CDL Syntax
	10.2 CDL Data Types
	10.3 CDL Notation for Data Constants
	10.4 ncgen
	10.5 ncdump

	11 Answers to Some Frequently Asked Questions
	Appendix A Units
	Appendix B File Format Specification
	Appendix C Summary of Fortran 90 Interface
	Appendix D FORTRAN 77 to Fortran 90 Transition Guide
	Index for Fortran 90
	Symbols

