NetCDF User’'s Guide for C

An Access Interface for Self-Describing, Portable Data
Version 3
June 1997

Russ Rew, Glenn Davis, Steve Emmerson, and Harvey Davies
Unidata Program Center

Copyright © 1997 University Corporation for Atmospheric Research, Boulder, Colorado.

Permission is granted to make and distribute verbatim copies of this manual provided that the
copyright notice and these paragraphs are preserved on all copies. The software and any accompa-
nying written materials are provided “as is” without warranty of any kind. UCAR expressly dis-
claims all warranties of any kind, either expressed or implied, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an endorse-
ment by the Unidata Program Center. Unidata does not authorize any use of information from this
publication for advertising or publicity purposes.

Foreword

Unidata (ttp://www.unidata.ucar.edu) is a National Science Foundation-sponsored program
empowering U.S. universities, through innovative applications of computers and networks, to

make the best use of atmospheric and related data for enhancing education and research. For ana-
lyzing and displaying such data, the Unidata Program Center offers universities several supported
software packages developed by other organizations, including the University of Wisconsin, Pur-
due University, NASA, and the National Weather Service. Underlying these is a Unidata-devel-
oped system for acquiring and managing data in real time, making practical the Unidata principle
that each university should acquire and manage its own data holdings as local requirements dic-
tate. It is significant that the Unidata program has no data center—the management of data is a
“distributed” function.

The Network Common Data Form (netCDF) software described in this guide was originally
intended to provide a common data access method for the various Unidata applications. These
deal with a variety of data types that encompass single-point observations, time series, regularly-
spaced grids, and satellite or radar images.

The netCDF software functions as an I/O library, callable from C, FORTRAN, C++, Perl, or other
language for which a netCDF library is available. The library stores and retrieves data in self-
describing, machine-independent datasets. Each netCDF dataset can contain multidimensional,
named variables (with differing types that include integers, reals, characters, bytes, etc.), and each
variable may be accompanied by ancillary data, such as units of measure or descriptive text. The
interface includes a method for appending data to existing netCDF datasets in prescribed ways,
functionality that is not unlike a (fixed length) record structure. However, the netCDF library also
allows direct-access storage and retrieval of data by variable name and index and therefore is use-
ful only for disk-resident (or memory-resident) datasets.

NetCDF access has been implemented in about half of Unidata’s software, so far, and it is planned
that such commonality will extend across all Unidata applications in order to:

» Facilitate the use of common datasets by distinct applications.

* Permit datasets to be transported between or shared by dissimilar computers transparently,
i.e., without translation.

* Reduce the programming effort usually spent interpreting formats.

* Reduce errors arising from misinterpreting data and ancillary data.

» Facilitate using output from one application as input to another.

» Establish an interface standard which simplifies the inclusion of new software into the Unidata
system.

A measure of success has been achieved. NetCDF is now in use on computing platforms that
range from CRAYSs to personal computers and include most UNIX-based workstations. It can be
used to create a complex dataset on one computer (say in FORTRAN) and retrieve that same self-
describing dataset on another computer (say in C) without intermediate translations—netCDF
datasets can be transferred across a network, or they can be accessed remotely using a suitable
network file system.

Because we believe that the use of netCDF access in non-Unidata software will benefit Unidata’s
primary constituency—such use may result in more options for analyzing and displaying Unidata
information—the netCDF library is distributed without licensing or other significant restrictions,
and current versions can be obtained via anonymous FTP. Apparently the software has been well
received by a wide range of institutions beyond the atmospheric science community, and a sub-
stantial number of public domain and commercial data analysis systems can now accept netCDF
datasets as input.

Several organizations have adopted netCDF as a data access standard, and there is an effort under-
way at the National Center for Supercomputer Applications (NCSA, which is associated with the
University of lllinois at Urbana-Champaign) to support the netCDF programming interfaces as a
means to store and retrieve data in “HDF files,” i.e., in the format used by the popular NCSA

tools. We have encouraged and cooperated with these efforts.

Questions occasionally arise about the level of support provided for the netCDF software. Uni-
data’s formal position, stated in the copyright notice which accompanies the netCDF library, is
that the software is provided “as is”. In practice, the software is updated from time to time, and
Unidata intends to continue making improvements for the foreseeable future. Because Unidata’s
mission is to serve geoscientists at U.S. universities, problems reported by that community neces-
sarily receive the greatest attention.

We hope the reader will find the software useful and will give us feedback on its application as
well as suggestions for its improvement.

David Fulker
Unidata Program Center Director

University Corporation for Atmospheric Research

Summary

The purpose of the Network Common Data Form (netCDF) interface is to allow you to create,
access, and share array-oriented data in a form that is self-describing and portable. “Self-describ-
ing” means that a dataset includes information defining the data it contains. “Portable” means that
the data in a dataset is represented in a form that can be accessed by computers with different
ways of storing integers, characters, and floating-point numbers. Using the netCDF interface for
creating new datasets makes the data portable. Using the netCDF interface in software for data
access, management, analysis, and display can make the software more generally useful.

The netCDF software includes C and FORTRAN interfaces for accessing netCDF data. These
libraries are available for many common computing platforms.

C++ and Perl interfaces for netCDF data access are also available from Unidata. The community
of netCDF users has contributed ports of the software to additional platforms and interfaces for
other programming languages as well. Source code for netCDF software libraries is freely avail-
able to encourage the sharing of both array-oriented data and the software that makes the data use-
ful.

This User’s Guide presents the netCDF data model, but documents only the C interface. Separate
documents are available for the other language interfaces; alg@se@CDF World Wide Web

site , http://www.unidata.ucar.edu/packages/netcdf/ for links to on-line versions of the

C, FORTRAN, C++ and Perl documentation. Reference documentation for UNIX systems, in the
form of UNIX ‘man’ pages for the C and FORTRAN interfaces is also available there. Extensive
additional information about netCDF, including pointers to other software that works with

netCDF data, is available from the netCDF World Wide Web site.

1 Introduction

1.1 The NetCDF Interface

The Network Common Data Form, or netCDF, is an interface to a library of data access functions
for storing and retrieving data in the form of arrays. &may is an n-dimensional (where nis 0, 1,

2, ...) rectangular structure containing items which all have the shateetype(e.g., 8-bit charac-

ter, 32-bit integer). Acalar (simple single value) is a 0-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-describing, portable
objects that can be accessed through a simple interface. Array values may be accessed directly,
without knowing details of how the data are stored. Auxiliary information about the data, such as
what units are used, may be stored with the data. Generic utilities and application programs can
access netCDF datasets and transform, combine, analyze, or display specified fields of the data.
The development of such applications may lead to improved accessibility of data and improved
reusability of software for array-oriented data management, analysis, and display.

The netCDF software implements abstract data typewhich means that all operations to access

and manipulate data in a netCDF dataset must use only the set of functions provided by the inter-
face. The representation of the data is hidden from applications that use the interface, so that how

the data are stored could be changed without affecting existing programs. The physical represen-
tation of netCDF data is designed to be independent of the computer on which the data were writ-

ten.

Unidata supports the netCDF interfaces for C, FORTRAN, C++, and Perl and for various UNIX
operating systems. The software is also ported and tested on a few other operating systems, with
assistance from users with access to these systems, before each major release. Unidata’s netCDF
software is freely available via FTP to encourage its widespread use.

1.2 NetCDF Is Not a Database Management System

Why not use an existing database management system for storing array-oriented data? Relational
database software is not suitable for the kinds of data access supported by the netCDF interface.

First, existing database systems that support the relational model do not support multidimensional
objects (arrays) as a basic unit of data access. Representing arrays as relations makes some useful
kinds of data access awkward and provides little support for the abstractions of multidimensional
data and coordinate systems. A quite different data model is needed for array-oriented data to
facilitate its retrieval, modification, mathematical manipulation and visualization.

Related to this is a second problem with general-purpose database systems: their poor perfor-
mance on large arrays. Collections of satellite images, scientific model outputs and long-term glo-
bal weather observations are beyond the capabilities of most database systems to organize and
index for efficient retrieval.

Finally, general-purpose database systems provide, at significant cost in terms of both resources
and access performance, many facilities that are not needed in the analysis, management, and dis-
play of array-oriented data. For example, elaborate update facilities, audit trails, report formatting,
and mechanisms designed for transaction-processing are unnecessary for most scientific applica-
tions.

1.3 File Format

To achieve network-transparency (machine-independence), netCDF is implemented in terms of an
external representation much like XDR (eXternal Data Representaticip;:g&snter-
nic.net/rfc/rfc1832.txt), a standard for describing and encoding data. This representation
provides encoding of data into machine-independent sequences of bits. It has been implemented
on a wide variety of computers, by assuming only that eight-bit bytes can be encoded and decoded
in a consistent way. The IEEE 754 floating-point standard is used for floating-point data represen-
tation.

The overall structure of netCDF files is described in Chapter 9 “NetCDF File Structure and Per-
formance,” page 131.

The details of the format are described in Appendix B “File Format Specification,” page 151.
However, users are discouraged from using the format specification to develop independent low-
level software for reading and writing netCDF files, because this could lead to compatibility prob-
lems if the format is ever modified.

1.4 What about Performance?

One of the goals of netCDF is to support efficient access to small subsets of large datasets. To sup-
port this goal, netCDF uses direct access rather than sequential access. This can be much more
efficient when the order in which data is read is different from the order in which it was written, or
when it must be read in different orders for different applications.

The amount of overhead for a portable external representation depends on many factors, including
the data type, the type of computer, the granularity of data access, and how well the implementa-
tion has been tuned to the computer on which it is run. This overhead is typically small in compar-
ison to the overall resources used by an application. In any case, the overhead of the external
representation layer is usually a reasonable price to pay for portable data access.

Although efficiency of data access has been an important concern in designing and implementing
netCDF, it is still possible to use the netCDF interface to access data in inefficient ways: for exam-
ple, by requesting a slice of data that requires a single value from each record. Advice on how to
use the interface efficiently is provided in Chapter 9 “NetCDF File Structure and Performance,”
page 131.

1.5 Is NetCDF a Good Archive Format?

NetCDF can be used as a general-purpose archive format for storing arrays. Compression of data
is possible with netCDF (e.g., using arrays of eight-bit or 16-bit integers to encode low-resolution
floating-point numbers instead of arrays of 32-bit numbers), but the current version of netCDF
was not designed to achieve optimal compression of data. Hence, using netCDF may require more
space than special-purpose archive formats that exploit knowledge of particular characteristics of
specific datasets.

1.6 Creating Self-Describing Data conforming to Conventions

The mere use of netCDF is not sufficient to make data “self-describing” and meaningful to both
humans and machines. The names of variables and dimensions should be meaningful and con-
form to any relevant conventions. Dimensions should have corresponding coordinate variables
where sensible.

Attributes play a vital role in providing ancillary information. It is important to use all the relevant
standard attributes using the relevant conventions. Section 8.1 “Attribute Conventions,” page 109,
describes reserved attributes (used by the netCDF library) and attribute conventions for generic
application software.

A number of groups have defined their own additional conventions and styles for netCDF data.
Descriptions of these conventions, as well as examples incorporating them can be accessed from
the netCDF Conventions sit@tp://www.unidata.ucar.edu/packages/netcdf/conven-

tions.html

These conventions should be used where suitable. Additional conventions are often needed for
local use. These should be contributed to the above netCDF conventions site if likely to interest
other users in similar areas.

1.7 Background and Evolution of the NetCDF Interface

The development of the netCDF interface began with a modest goal related to Unidata’s needs: to
provide a common interface between Unidata applications and real-time meteorological data.
Since Unidata software was intended to run on multiple hardware platforms with access from
both C and FORTRAN, achieving Unidata’s goals had the potential for providing a package that
was useful in a broader context. By making the package widely available and collaborating with
other organizations with similar needs, we hoped to improve the then current situation in which
software for scientific data access was only rarely reused by others in the same discipline and
almost never reused between disciplines (Fulker, 1988).

Important concepts employed in the netCDF software originated in a paper (Treinish and Gough,
1987) that described data-access software developed at the NASA Goddard National Space Sci-
ence Data Center (NSSDC). The interface provided by this software was called the Common Data
Format (CDF). The NASA CDF was originally developed as a platform-specific FORTRAN

library to support an abstraction for storing arrays.

The NASA CDF package had been used for many different kinds of data in an extensive collec-
tion of applications. It had the virtues of simplicity (only 13 subroutines), independence from
storage format, generality, ability to support logical user views of data, and support for generic
applications.

Unidata held a workshop on CDF in Boulder in August 1987. We proposed exploring the possibil-
ity of collaborating with NASA to extend the CDF FORTRAN interface, to define a C interface,
and to permit the access of data aggregates with a single call, while maintaining compatibility
with the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had devel-
oped a package of C software for UNIX that supported sequential access to self-describing array-
oriented data and a “pipes and filters” (or “data flow”) approach to processing, analyzing, and dis-
playing the data. This package also used the “Common Data Format” name, later changed to C-
Based Analysis and Display System (CANDIS). Unidata learned of Raymond’s work (Raymond,
1988), and incorporated some of his ideas, such as the use of named dimensions and variables
with differing shapes in a single data object, into the Unidata netCDF interface.

In early 1988, Glenn Davis of Unidata developed a prototype netCDF package in C that was lay-
ered on XDR. This prototype proved that a single-file, XDR-based implementation of the CDF
interface could be achieved at acceptable cost and that the resulting programs could be imple-
mented on both UNIX and VMS systems. However, it also demonstrated that providing a small,
portable, and NASA CDF-compatible FORTRAN interface with the desired generality was not
practical. NASAs CDF and Unidata’s netCDF have since evolved separately, but recent CDF ver-
sions share many characteristics with netCDF.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development firm in San
Diego, California), a participant in the 1987 Unidata CDF workshop, independently developed a
CDF package in C that extended the NASA CDF interface in several important ways (Fahle,
1989). Like Raymond’s package, the SeaSpace CDF software permitted variables with unrelated
shapes to be included in the same data object and permitted a general form of access to multidi-
mensional arrays. Fahle’s implementation was used at SeaSpace as the intermediate form of stor-
age for a variety of steps in their image-processing system. This interface and format have
subsequently evolved into the Terascan data format.

After studying Fahle’s interface, we concluded that it solved many of the problems we had identi-
fied in trying to stretch the NASA interface to our purposes. In August 1988, we convened a small
workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues. Attend-
ing were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDF soft-
ware), Angel Li of the University of Miami (who had implemented our prototype netCDF

software on VMS and was a potential user), and Unidata systems development staff. Consensus
was reached at the workshop after some further simplifications were discovered. A document
incorporating the results of the workshop into a proposed Unidata netCDF interface specification
was distributed widely for comments before Glenn Davis and Russ Rew implemented the first
version of the software. Comparison with other data-access interfaces and experience using

netCDF are discussed in Rew and Davis (1990a), Rew and Davis (1990b), Jenter and Signell
(1992), and Brown, Folk, Goucher, and Rew (1993).

In October 1991, we announced version 2.0 of the netCDF software distribution. Slight modifica-
tions to the C interface (declaring dimension lengths torge rather thannt) improved the

usability of netCDF on inexpensive platforms such as MS-DOS computers, without requiring
recompilation on other platforms. This change to the interface required no changes to the associ-
ated file format.

Release of netCDF version 2.3 in June 1993 preserved the same file format but added single call
access to records, optimizations for accessing cross-sections involving non-contiguous data, sub-
sampling along specified dimensions (using ‘strides’), accessing non-contiguous data (using
‘mapped array sections’), improvements to the ncdump and ncgen utilities, and an experimental
C++ interface.

In version 2.4, released in February 1996, support was added for new platforms and for the C++
interface, and significant optimizations were implemented for supercomputer architectures.

FAN (File Array Notation), software providing a high-level interface to netCDF data, was made
available in May 1996. The capabilities of the FAN utilities include extracting and manipulating
array data from netCDF datasets, printing selected data from netCDF arrays, copying ASCII data
into netCDF arrays, and performing various operations (sum, mean, max, min, product,...) on
netCDF arrays. More information about FAN is available from the FAN Utilities document,
http://www.unidata.ucar.edu/packages/netcdf/fan_utils.html

1.8 What's New Since the Previous Release?

This Guide documents the January 1997 release of netCDF 3, which preserves the same file for-
mat as earlier versions but includes some major changes from version 2.4:

» complete rewrite of the netCDF library in ANSI C;

* new type-safe C and FORTRAN interfaces;

* automatic type conversion facilities;

» significant changes in the internal architecture, resulting in higher performance and easier
optimization on new platforms;

» support for all netCDF 2 function interfaces, globals variables, and behavior, for backward
compatibility;

» revised documentation; and fixes for reported bugs.

1.9 Limitations of NetCDF

The netCDF data model is widely applicable to data that can be organized into a collection of
named array variables with named attributes, but there are some important limitations to the
model and its implementation in software. Some of these limitations are inherent in the trade-offs
among conflicting requirements that netCDF embodies, but we plan to address other limitations in

the next version of the software.

Currently, netCDF offers a limited number of external numeric data types: 8-, 16-, 32-bit integers,
or 32- or 64-bit floating-point numbers. This limited set of sizes may use file space inefficiently
compared to packing data in bit fields. For example, arrays of 9-bit values must be stored in 16-bit
short integers. Storing arrays of 1- or 2-bit values in 8-bit values is even less optimal.

With the current netCDF file format, no more than 2 gigabytes of data can be stored in a single
netCDF dataset. This limitation is a result of 32-bit offsets currently used for storing positions
within a file.

Another limitation of the current model is that only one unlimited (changeable) dimension is per-
mitted for each netCDF data set. Multiple variables can share an unlimited dimension, but then
they must all grow together. Hence the netCDF model does not permit variables with several
unlimited dimensions or the use of multiple unlimited dimensions in different variables within the
same dataset. Hence variables that have non-rectangular shapes (for example, ragged arrays) can-
not be represented conveniently.

The extent to which data can be completely self-describing is limited: there is always some
assumed context without which sharing and archiving data would be impractical. NetCDF permits
storing meaningful names for variables, dimensions, and attributes; units of measure in a form
that can be used in computations; text strings for attribute values that apply to an entire data set;
and simple kinds of coordinate system information. But for more complex kinds of metadata (for
example, the information necessary to provide accurate georeferencing of data on unusual grids or
from satellite images), it is often necessary to develop conventions.

Specific additions to the netCDF data model might make some of these conventions unnecessary
or allow some forms of metadata to be represented in a uniform and compact way. For example,
adding explicit georeferencing to the netCDF data model would simplify elaborate georeferencing
conventions at the cost of complicating the model. The problem is finding an appropriate trade-off
between the richness of the model and its generality (i.e., its ability to encompass many kinds of
data). A data model tailored to capture the shared context among researchers within one discipline
may not be appropriate for sharing or combining data from multiple disciplines.

The netCDF data model does not support nested data structures such as trees, nested arrays, or
other recursive structures, primarily because the current FORTRAN interface must be able to read
and write any netCDF data set. Through use of indirection and conventions it is possible to repre-
sent some kinds of nested structures, but the result may fall short of the netCDF goal of self-
describing data.

Finally, the current implementation limits concurrent access to a netCDF dataset. One writer and
multiple readers may access data in a single dataset simultaneously, but there is no support for
multiple concurrent writers.

1.10 Future Plans for NetCDF

Currentplans are to add transparent data packing, improved concurrency support, and the ability
to access datasets larger than 2 Gigabytes. Other desirable extensions that may be added, if practi-
cal, include access to data by key or coordinate value, support for efficient structure changes (e.g.,
new variables and attributes), support for pointers to data cross-sections in other datasets, nested
arrays (allowing representation of ragged arrays, trees and other recursive data structures), and
multiple unlimited dimensions.

References

1. Brown, S. A, M. Folk, G. Goucher, and R. Rew, “Software for Portable Scientific Data Man-
agement,Computers in Physic@&merican Institute of Physics, Vol. 7, No. 3, May/June
1993.

2. Davies, H. L., “FAN - An array-oriented query language,” Second Workshop on Database
Issues for Data Visualization (Visualization 1995), Atlanta, Georgia, IEEE, October 1995.

3. Fahle, J.TeraScan Applications Programming InterfazaSpace, San Diego, California,
1989.

4. Fulker, D. W., “The netCDF: Self-Describing, Portable Files---a Basis for ‘Plug-Compatible’
Software Modules Connectable by Network€3SU Workshop on Geophysical Informatics
Moscow, USSR, August 1988.

5. Fulker, D. W.,, “Unidata Strawman for Storing Earth-Referencing D&eyenth International
Conference on Interactive Information and Processing Systems for Meteorology, Oceanogra-
phy, and HydrologyNew Orleans, La., American Meteorology Society, January 1991.

6. Gough, M. L.NSSDC CDF Implementer’s Guide (DEC VAX/VMS) VersionNafional
Space Science Data Center, 88-17, NASA/Goddard Space Flight Center, 1988.

7. Jenter, H. L. and R. P. Signell, “NetCDF: A Freely-Available Software-Solution to Data-
Access Problems for Numerical ModeleBrbceedings of the American Society of Civil
Engineers Conference on Estuarine and Coastal Modeliagpa, Florida, 1992.

8. Raymond, D. J., “A C Language-Based Modular System for Analyzing and Displaying Grid-
ded Numerical DataJournal of Atmospheric and Oceanic Techno)égp01-511, 1988.

9. Rew, R. K. and G. P. Davis, “The Unidata netCDF: Software for Scientific Data Ac&st)’
International Conference on Interactive Information and Processing Systems for Meteorology,
Oceanography, and Hydrologgnaheim, California, American Meteorology Society, Febru-
ary 1990.

10. Rew, R. K. and G. P. Davis, “NetCDF: An Interface for Scientific Data Acdgessjputer
Graphics and ApplicationdEEE, pp. 76-82, July 1990.

11. Rew, R. K. and G. P. Davis, “Unidata’s netCDF Interface for Data Access: Status and Plans,”
Thirteenth International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrolpgyaheim, California, American Meteorology
Society, February 1997.

12. Treinish, L. A. and M. L. Gough, “A Software Package for the Data Independent Management
of Multi-Dimensional Data,EOS TransactionsAmerican Geophysical Unio68, 633-635,

1987.

2 Components of a NetCDF Dataset

2.1 The NetCDF Data Model

A netCDF dataset contaimsmensionsvariables andattributes which all have both a name and

an ID number by which they are identified. These components can be used together to capture the
meaning of data and relations among data fields in an array-oriented dataset. The netCDF library
allows simultaneous access to multiple netCDF datasets which are identified by dataset ID num-
bers, in addition to ordinary file names.

A netCDF dataset contains a symbol table for variables containing their name, data type, rank
(number of dimensions), dimensions, and starting disk address. Each element is stored at a disk
address which is a linear function of the array indices (subscripts) by which it is identified. Hence,
these indices need not be stored separately (as in a relational database). This provides a fast and
compact storage method.

2.1.1 Naming Conventions

The names of dimensions, variables and attributes consist of arbitrary sequences of alphanumeric
characters (as well as underscoreand hyphen-"’), beginning with a letter or underscore.

(However names commencing with underscore are reserved for system use.) Case is significant in
netCDF names.

2.1.2 network Common Data Form Language (CDL)

We will use a small netCDF example to illustrate the concepts of the netCDF data model. This
includes dimensions, variables, and attributes. The notation used to describe this simple netCDF
object is called CDL (network Common Data form Language), which provides a convenient way
of describing netCDF datasets. The netCDF system includes utilities for producing human-ori-
ented CDL text files from binary netCDF datasets and vice versa.

netcdf example_1 { // example of CDL notation for a netCDF dataset

dimensions: /I dimension names and lengths are declared first
lat = 5, lon = 10, level = 4, time = unlimited;

variables: /[variable types, names, shapes, attributes
float temp(time,level,lat,lon);
temp:long_name = "temperature";
temp:units = "celsius";

float rh(time,lat,lon);
rh:long_name = "relative humidity";
rh:valid_range = 0.0, 1.0; // min and max
int lat(lat), lon(lon), level(level);
lat:units = "degrees_north";
lon:units = "degrees_east";

level:units = "millibars";
short time(time);

time:units = "hours since 1996-1-1";
/I global attributes

:source = "Fictional Model Output";

data: /I optional data assignments
level =1000, 850, 700, 500;
lat =20, 30, 40, 50, 60;
lon =-160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
time =12;
rh =5,2.4,2,.3,.2,.4,5,6,7,

The CDL notation for a netCDF dataset can be generated automatically bynosing, a utility
program described later (see Section 1G&ump,” page 140). Another netCDF utilityicgen ,
generates a netCDF dataset (or optionally C or FORTRAN source code containing calls needed to
produce a netCDF dataset) from CDL input (see Section h@geh ,” page 139).

The CDL notation is simple and largely self-explanatory. It will be explained more fully as we
describe the components of a netCDF dataset. For now, note that CDL statements are terminated
by a semicolon. Spaces, tabs, and newlines can be used freely for readability. Comments in CDL
follow the characters/* ' on any line. A CDL description of a netCDF dataset takes the form

netCDF name{
dimensions: ...
variables: ...
data: ...

}

where thenameis used only as a default in constructing file names bytgen utility. The CDL
description consists of three optional parts, introduced by the keywloidssions |, variables
anddata . NetCDF dimension declarations appear aftediiensions keyword, netCDF vari-
ables and attributes are defined aftenthiables keyword, and variable data assignments
appear after theata keyword.

2.2 Dimensions
A dimension may be used to represent a real physical dimension, for example, time, latitude, lon-
gitude, or height. A dimension might also be used to index other quantities, for example station or

model-run-number.

A netCDF dimension has botmhameand dength A dimension length is an arbitrary positive
integer, except that one dimension in a netCDF dataset can have theslngteD.

Such a dimension is called tbelimited dimensiowr therecord dimensionA variable with an
unlimited dimension can grow to any length along that dimension. The unlimited dimension index

is like a record number in conventional record-oriented files. A netCDF dataset can have at most
one unlimited dimension, but need not have any. If a variable has an unlimited dimension, that
dimension must be the most significant (slowest changing) one. Thus any unlimited dimension
must be the first dimension in a CDL shape and the first dimension in corresponding C array dec-
larations.

CDL dimension declarations may appear on one or more lines following the CDL keyword
dimensions . Multiple dimension declarations on the same line may be separated by commas.
Each declaration is of the formame= length

There are four dimensions in the above examyale; lon , level , andtime . The first three are
assigned fixed lengthsme is assigned the lengtNLIMITED, which means it is thenlimited
dimension.

The basic unit of named data in a netCDF datasetasiable When a variable is defined, its
shapeis specified as a list of dimensions. These dimensions must already exist. The number of
dimensions is called thrank (a.k.a.dimensionality. A scalar variable has rank 0, a vector has
rank 1 and a matrix has rank 2.

It is possible to use the same dimension more than once in specifying a variable shape (but this
was not possible in previous netCDF versions). For exargptelation(instrument,

instrument) could be a matrix giving correlations between measurements using different instru-
ments. But data whose dimensions correspond to those of physical space/time should have a
shape comprising different dimensions, even if some of these have the same length.

2.3 Variables

Variables are used to store the bulk of the data in a netCDF datagatigblerepresents an array

of values of the same type. A scalar value is treated as a 0-dimensional array. A variable has a
name, a data type, and a shape described by its list of dimensions specified when the variable is
created. A variable may also have associated attributes, which may be added, deleted or changed
after the variable is created.

A variable external data type is one of a small set of net@pEsthat have the namesC_BYTE,
NC_CHAR,NC_SHORT, NC_INT,NC_FLOATandNC_DOUBLEN the C interfaceNC_LONGSs a depre-
cated synonym foxC_INT in the C interface.

In the CDL notation, these types are given the simpler names, char , short ,int , float , and
double .real may be used as a synonymfio&t in the CDL notationlong is a deprecated
synonym forint . The exact meaning of each of the types is discussed in Section 3.1 “netCDF
external data types,” page 15.

CDL variable declarations appear after theable keyword in a CDL unit. They have the form

type variable_namé dim_name_1, dim_name_2,);..

for variables with dimensions, or
type variable_name
for scalar variables.

In the above CDL example there are six variables. As discussed below, four of these are coordi-
nate variables. The remaining variables (sometimes qafiedhry variable$, temp andrh , con-

tain what is usually thought of as the data. Each of these variables has the unlimited dimension
time as its first dimension, so they are calledord variablesA variable that is not a record
variable has a fixed length (number of data values) given by the product of its dimension lengths.
The length of a record variable is also the product of its dimension lengths, but in this case the
product is variable because it involves the length of the unlimited dimension, which can vary. The
length of the unlimited dimension is the number of records.

2.3.1 Coordinate Variables

It is legal for a variable to have the same name as a dimension. Such variables have no special
meaning to the netCDF library. However there is a convention that such variables should be
treated in a special way by software using this library.

A variable with the same name as a dimension is callegloadinate variablelt typically defines
a physical coordinate corresponding to that dimension. The above CDL example includes the
coordinate variablelat , lon , level andtime , defined as follows:

int lat(lat), lon(lon), level(level);
short time(time);

data:
level = 1000, 850, 700, 500;
lat =20, 30, 40, 50, 60;
lon =-160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
time =12

These define the latitudes, longitudes, barometric pressures and times corresponding to positions
along these dimensions. Thus there is data at altitudes corresponding to 1000, 850, 700 and 500
millibars; and at latitudes 20, 30, 40, 50 and 60 degrees north. Note that each coordinate variable
is a vector and has a shape consisting of just the dimension with the same name.

A position along a dimension can be specified using@ex This is an integer with a minimum
value of 0 for C programs. Thus the 700 millibar level would have an index value of 2 in the
example above.

If a dimension has a corresponding coordinate variable, then this provides an alternative, and
often more convenient, means of specifying position along it. Current application packages that
make use of coordinate variables commonly assume they are numeric vectors and strictly mono-
tonic (all values are different and either increasing or decreasing).

2.4 Attributes

NetCDFattributesare used to store data about the datai{lary dataor metadatd, similar in

many ways to the information stored in data dictionaries and schema in conventional database
systems. Most attributes provide information about a specific variable. These are identified by the
name (or ID) of that variable, together with the name of the attribute.

Some attributes provide information about the dataset as a whole and argloalédttributes.
These are identified by the attribute name together with a blank variable name (in CDL) or a spe-
cial null “global variable” ID (in C or Fortran).

An attribute has an associated variable (the null “global variable” for a global attribute), a name, a
data type, a length, and a value. The current version treats all attributes as vectors; scalar values
are treated as single-element vectors.

Conventional attribute names should be used where applicable. New names should be as mean-
ingful as possible.

The external type of an attribute is specified when it is created. The types permitted for attributes
are the same as the netCDF external data types for variables. Attributes with the same name for
different variables should sometimes be of different types. For example, the attrilduieax

specifying the maximum valid data value for a variable of typeshould be of typet ,

whereas the attributalid_max for a variable of typeéouble should instead be of typeuble .

Attributes are more dynamic than variables or dimensions; they can be deleted and have their
type, length, and values changed after they are created, whereas the netCDF interface provides no
way to delete a variable or to change its type or shape.

The CDL notation for defining an attribute is
variable _name:attribute_nanwe list_of values
for a variable attribute, or
:attribute_name= list_of values

for a global attribute. The type and length of each attribute are not explicitly declared in CDL;
they are derived from the values assigned to the attribute. All values of an attribute must be of the
same type. The notation used for constant values of the various netCDF types is discussed later
(see Section 10.3 “CDL Notation for Data Constants,” page 138).

In the netCDF example (see Section 2.1.2 “network Common Data Form Language (CDL),”
page 9)units is an attribute for the variabl& that has a 13-character array value
‘degrees_north . And valid_range is an attribute for the variabie that has length 2 and val-
ues 0.0 "and ‘1.0 .

One global attribute-seurce ---is defined for the example netCDF dataset. This is a character
array intended for documenting the data. Actual netCDF datasets might have more global

attributes to document the origin, history, conventions, and other characteristics of the dataset as a
whole.

Most generic applications that process netCDF datasets assume standard attribute conventions
and it is strongly recommended that these be followed unless there are good reasons for not doing
s0. See Section 8.1 “Attribute Conventions,” page 109, for information alpasit , long_name ,

valid_min ,valid_max ,valid_range , scale_factor , add_offset , Fillvalue , and other
conventional attributes.

Attributes may be added to a netCDF dataset long after it is first defined, so you don’t have to
anticipate all potentially useful attributes. However adding new attributes to an existing dataset
can incur the same expense as copying the dataset. See Chapter 9 “NetCDF File Structure and
Performance,” page 131, for a more extensive discussion.

2.5 Differences between Attributes and Variables

In contrast to variables, which are intended for bulk data, attributes are intended for ancillary data,
or information about the data. The total amount of ancillary data associated with a netCDF object,
and stored in its attributes, is typically small enough to be memory-resident. However variables
are often too large to entirely fit in memory and must be split into sections for processing.

Another difference between attributes and variables is that variables may be multidimensional.
Attributes are all either scalars (single-valued) or vectors (a single, fixed dimension).

Variables are created with a name, type, and shape before they are assigned data values, so a vari-
able may exist with no values. The value of an attribute must be specified when it is created, so no
attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned to vari-
ables may have the same units as the variable (for exarapleange) or have no units (for
examplescale_factor). If you want to store data that requires units different from those of the
associated variable, it is better to use a variable than an attribute. More generally, if data require
ancillary data to describe them, are multidimensional, require any of the defined netCDF dimen-
sions to index their values, or require a significant amount of storage, that data should be repre-
sented using variables rather than attributes.

3 Data

This chapter discusses the six primitive netCDF external data types, the kinds of data access sup-
ported by the netCDF interface, and how data structures other than arrays may be implemented in
a netCDF dataset.

3.1 netCDF external data types

The external types supported by the netCDF interface are:

char 8-bit characters intended for representing text.

byte 8-bit signed or unsigned integers (see discussion below).
short 16-bit signed integers.

int 32-bit signed integers.

float or real 32-bit IEEE floating-point.

double 64-bit IEEE floating-point.

These types were chosen to provide a reasonably wide range of trade-offs between data precision
and number of bits required for each value. These external data types are independent from what-
ever internal data types are supported by a particular machine and language combination.

These types are called “external”, because they correspond to the portable external representation
for netCDF data. When a program reads external netCDF data into an internal variable, the data is
converted, if necessary, into the specified internal type. Similarly, if you write internal data into a
netCDF variable, this may cause it to be converted to a different external type, if the external type
for the netCDF variable differs from the internal type.

The separation of external and internal types and automatic type conversion have several advan-
tages. You need not be aware of the external type of numeric variables, since automatic conver-
sion to or from any desired numeric type is available. You can use this feature to simplify code, by
making it independent of external types, using a sufficiently wide internal type, e.g., double preci-
sion, for numeric netCDF data of several different external types. Programs need not be changed
to accommodate a change to the external type of a variable.

If conversion to or from an external numeric type is necessary, it is handled by the library. This
automatic conversion and separation of external data representation from internal data types will
become even more important in a future version of netCDF, when new external types will be
added for packed data for which there may be no natural corresponding internal type, for exam-
ple, packed arrays of 11-bit values.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an internal short integer type may not be

able to hold data stored externally as an integer. When accessing an array of values, a range error
is returned if one or more values are out of the range of representable values, but other values are
converted properly.

Note that mere loss of precision in type conversion does not return an error. Thus, if you read dou-
ble precision values into a single-precision floating-point variable, for example, no error results
unless the magnitude of the double precision value exceeds the representable range of single-pre-
cision floating point numbers on your platform. Similarly, if you read a large integer into a float
incapable of representing all the bits of the integer in its mantissa, this loss of precision will not
result in an error. If you want to avoid such precision loss, check the external types of the vari-
ables you access to make sure you use an internal type that has adequate precision.

The names for the primitive external data typsse(, char , short ,int , float oOrreal , and
double) are reserved words in CDL, so the names of variables, dimensions, and attributes must
not be type names.

It is possible to interpredyte data as either signed (-128 to 127) or unsigned (0 to 255). However,
when reading byte data to be converted into other numeric types, it is interpreted as signed.

See Section 2.3 “Variables,” page 11, for the correspondence between netCDF external data types
and the data types of a language.

3.2 Data Access

To access (read or write) netCDF data you specify an open netCDF dataset, a netCDF variable,
and information (e.g., indices) identifying elements of the variable. The name of the access func-
tion corresponds to the internal type of the data. If the internal type has a different representation
from the external type of the variable, a conversion between the internal type and external type
will take place when the data is read or written.

Access to data direct, which means you can access a small subset of data from a large dataset
efficiently, without first accessing all the data that precedes it. Reading and writing data by speci-
fying a variable, instead of a position in a file, makes data access independent of how many other
variables are in the dataset, making programs immune to data format changes that involve adding
more variables to the data.

In the C and FORTRAN interfaces, datasets are not specified by name every time you want to
access data, but instead by a small integer called a dataset ID, obtained when the dataset is first
created or opened.

Similarly, a variable is not specified by name for every data access either, but by a variable ID, a
small integer used to identify each variable in a netCDF dataset.
3.2.1 Forms of Data Access

The netCDF interface supports several forms of direct access to data values in an open netCDF

dataset. We describe each of these forms of access in order of increasing generality:

» access to all elements;

* access to individual elements, specified withnalex vector

* access to array sections, specified witlnaex vectorandcount vector

* access to subsampled array sections, specified witltar vectorcount vectgrandstride
vector, and

* access to mapped array sections, specified withd@x vectorcount vectorstride vector
and anndex mapping vector

The four types of vectoriridex vectorcount vectorstride vectorandindex mapping vectyeach

have one element for each dimension of the variable. Thus, for an n-dimensional variable (rank =
n), n-element vectors are needed. If the variable is a scalar (no dimensions), these vectors are
ignored.

An array sectionis a “slab” or contiguous rectangular block that is specified by two vectors. The
index vectogives the indices of the element in the corner closest to the origimotinevector

gives the lengths of the edges of the slab along each of the variable’s dimensions, in order. The
number of values accessed is the product of these edge lengths.

A subsampled array sectios similar to ararray section except that an additionsiride vector

is used to specify sampling. This vector has an element for each dimension giving the length of
the strides to be taken along that dimension. For example, a stride of 4 means every fourth value
along the corresponding dimension. The total number of values accessed is again the product of
the elements of theount vectar

A mapped array sectiois similar to asubsampled array secti@xcept that an additionaddex
mapping vectoallows one to specify how data values associated with the netCDF variable are
arranged in memory. The offset of each value from the reference location, is given by the sum of
the products of each index (of the imaginary internal array which would be used if there were no
mapping) by the corresponding element of the index mapping vector. The number of values
accessed is the same as feauhsampled array section

The use of mapped array sections is discussed more fully below, but first we present an example
of the more commonly used array-section access.

3.2.2 An Example of Array-Section Access

Assume that in our earlier example of a netCDF dataset (see Section 2.1.2 “network Common
Data Form Language (CDL),” page 9), we wish to read a cross-section of all the datattmihe
variable at one level (say, the second), and assume that there are currently three tieeongs{

ues) in the netCDF dataset. Recall that the dimensions are defined as

lat = 5, lon = 10, level = 4, time = unlimited;

and the variablemp is declared as

float temp(time, level, lat, lon);
in the CDL notation.
A corresponding C variable that holds data for only one level might be declared as

#define LATS 5

#define LONS 10

#define LEVELS 1

#define TIMES 3 [* currently */

float temp[TIMES*LEVELS*LATS*LONS];

to keep the data in a one-dimensional array, or

float temp[TIMES][LEVELS][LATS][LONS];
using a multidimensional array declaration.

To specify the block of data that represents just the second level, all times, all latitudes, and all
longitudes, we need to provide a start index and some edge lengths. The start index should be (O,
1, 0, 0) in C, because we want to start at the beginning of eachtiafetheon , andiat dimen-

sions, but we want to begin at the second value aéthe dimension. The edge lengths should

be (3,1, 5, 10) in C, (since we want to get data for all thiree values, only onével value, all

fivelat values, and all 1®n values. We should expect to get a total of 150 floating-point values
returned (3*L *5* 10), and should provide enough space in our array for this many. The order in
which the data will be returned is with the last dimengion, varying fastest:

temp|0][1][0][0]
temp|[O][1][0][1]
temp|0][1][0][2]
temp|O][1][0][3]

temp(2][1][4][7]
temp(2][1][4][8]
temp(2][1][4][9]

Different dimension orders for the C, FORTRAN, or other language interfaces do not reflect a dif-
ferent order for values stored on the disk, but merely different orders supported by the procedural
interfaces to the languages. In general, it does not matter whether a netCDF dataset is written
using the C, FORTRAN, or another language interface; netCDF datasets written from any sup-
ported language may be read by programs written in other supported languages.

3.2.3 More on General Array Section Access

The use of mapped array sections allows non-trivial relationships between the disk addresses of

variable elements and the addresses where they are stored in memory. For example, a matrix in
memory could be the transpose of that on disk, giving a quite different order of elements. In a reg-
ular array section, the mapping between the disk and memory addresses is trivial: the structure of
the in-memory values (i.e., the dimensional lengths and their order) is identical to that of the array

section. In a mapped array section, howevemdex mapping vectas used to define the map-

ping between indices of netCDF variable elements and their memory addresses.

With mapped array access, the offset (number of array elements) from the origin of a memory-res-

ident array to a particular point is given by theer produc’t of the index mapping vector with

the point’scoordinate offset vectoh point’s coordinate offset vectaives, for each dimension,

the offset from the origin of the containing array to the point.In C, a point’s coordinate offset vec-
tor is the same as its coordinate vector.

The index mapping vector for a regular array section would have—in order from most rapidly
varying dimension to most slowly—a constant 1, the product of that value with the edge length of
the most rapidly varying dimension of the array section, then the product of that value with the
edge length of the next most rapidly varying dimension, and so on. In a mapped array, however,
the correspondence between netCDF variable disk locations and memory locations can be differ-
ent.

For example, the following C definitions

struct vel {
int flags;
float u;
float v;

} vel[NX][NYT;

ptrdiff_t imap[2] = {
sizeof(struct vel),
sizeof(struct vel)*NY

3

whereimap is the index mapping vector, can be used to access the memory-resident values of the
netCDF variablevel(NY,NX) , even though the dimensions are transposed and the data is con-
tained in a 2-D array of structures rather than a 2-D array of floating-point values.

A detailed example of mapped array access is presented in the description of the interfaces for
mapped array access. See Section 7.9 “Write a Mapped Array of Valcigsut_varm_ type
NF_PUT_VARMtype,” page 78.

Note that, although the netCDF abstraction allows the use of subsampled or mapped array-section
access there use is not required. If you do not need these more general forms of access, you may
ignore these capabilities and use single value access or regular array section access instead.

1. Theinner productof two vectors [x0, X1, ..., xn] and [y0, y1, ..., yn] is just xO*y0 +
x1*y1l + ... + Xn*yn.

3.3 Type Conversion

Each netCDF variable has an external type, specified when the variable is first defined. This exter-
nal type determines whether the data is intended for text or numeric values, and if numeric, the
range and precision of numeric values.

If the netCDF external type for a variablecisar , only character data representing text strings can
be written to or read from the variable. No automatic conversion of text data to a different repre-
sentation is supported.

If the type is numeric, however, the netCDF library allows you to access the variable data as a dif-
ferent type and provides automatic conversion between the numeric data in memory and the data
in the netCDF variable. For example, if you write a program that deals with all numeric data as
double-precision floating point values, you can read netCDF data into double-precision arrays
without knowing or caring what the external type of the netCDF variables are. On reading netCDF
data, integers of various sizes and single-precision floating-point values will all be converted to
double-precision, if you use the data access interface for double-precision values. Of course, you
can avoid automatic numeric conversion by using the netCDF interface for a value type that corre-
sponds to the external data type of each netCDF variable, where such value types exist.

The automatic numeric conversions performed by netCDF are easy to understand, because they
behave just like assignment of data of one type to a variable of a different type. For example, if
you read floating-point netCDF data as integers, the result is truncated towards zero, just as it
would be if you assigned a floating-point value to an integer variable. Such truncation is an exam-
ple of the loss of precision that can occur in numeric conversions.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. For example, an integer may not be able to hold data
stored externally as an IEEE floating-point number. When accessing an array of values, a range
error is returned if one or more values are out of the range of representable values, but other val-
ues are converted properly.

Note that mere loss of precision in type conversion does not result in an error. For example, if you
read double precision values into an integer, no error results unless the magnitude of the double
precision value exceeds the representable range of integers on your platform. Similarly, if you
read a large integer into a float incapable of representing all the bits of the integer in its mantissa,
this loss of precision will not result in an error. If you want to avoid such precision loss, check the
external types of the variables you access to make sure you use an internal type that has a compat-
ible precision.

Whether a range error occurs in writing a large floating-point value near the boundary of repre-
sentable values may be depend on the platform. The largest floating-point value you can write to a
netCDF float variable is the largest floating-point number representable on your system that is less
than 2 to the 128th power. The largest double precision value you can write to a double variable is
the largest double-precision number representable on your system that is less than 2 to the 1024th
power.

This automatic conversion and separation of external data representation from internal data types
will become even more important in a future version of netCDF, when new external types will be
added for packed data for which there is no natural corresponding internal type, for example,
arrays of 11-bit values.

3.4 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection of
named arrays with attached vector attributes. NetCDF is not particularly well-suited for storing
linked lists, trees, sparse matrices, ragged arrays or other kinds of data structures requiring point-
ers.

It is possible to build other kinds of data structures from sets of arrays by adopting various con-
ventions regarding the use of data in one array as pointers into another array. The netCDF library
won’t provide much help or hindrance with constructing such data structures, but netCDF pro-
vides the mechanisms with which such conventions can be designed.

The following example stores a ragged aregged_mat using an attributeow_index to name
an associated index variable giving the index of the start of each row. In this example, the first row
contains 12 elements, the second row contains 7 elements (19 - 12), and so on.

float ragged_mat(max_elements);
ragged_mat:row_index = "row_start";
int row_start(max_rows);
data:
row_start =0, 12,19, ...

As another example, netCDF variables may be grouped within a netCDF dataset by defining
attributes that list the names of the variables in each group, separated by a conventional delimiter
such as a space or comma. Using a naming convention for attribute names for such groupings per-
mits any number of named groups of variables. A particular conventional attribute for each vari-
able might list the names of the groups of which it is a member. Use of attributes, or variables that
refer to other attributes or variables, provides a flexible mechanism for representing some kinds of
complex structures in netCDF datasets.

4 Use of the NetCDF Library

You can use the netCDF library without knowing about all of the netCDF interface. If you are cre-
ating a netCDF dataset, only a handful of routines are required to define the necessary dimen-
sions, variables, and attributes, and to write the data to the netCDF dataset. (Even less are needed
if you use thencgen utility to create the dataset before running a program using netCDF library
calls to write data.) Similarly, if you are writing software to access data stored in a particular
netCDF object, only a small subset of the netCDF library is required to open the netCDF dataset
and access the data. Authors of generic applications that access arbitrary netCDF datasets need to
be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for common
uses. For clarity we present only the names of routines; omit declarations and error checking; omit
the type-specific suffixes of routine names for variables and attributes; indent statements that are
typically invoked multiple times; and useto represent arbitrary sequences of other statements.
Full parameter lists are described in later chapters.

4.1 Creating a NetCDF Dataset

Here is a typical sequence of netCDF calls used to create a new netCDF dataset:
nc_create [* create netCDF dataset: enter define mode */
nc_def dim [* define dimensions: from name and length */

nc_def var /* define variables: from name, type, ... */

n(.:._.put_att [* put attribute: assign attribute values */
nc_.é.nddef /* end definitions: leave define mode */

n(.:._.put_var [* provide values for variables */
nc_.(.:.Iose [* close: save new netCDF dataset */

Only one call is needed to create a netCDF dataset, at which point you will be in the first of two
netCDFmodesWhen accessing an open netCDF dataset, it is eitheefine moder data mode

In define mode, you can create dimensions, variables, and new attributes, but you cannot read or
write variable data. In data mode, you can access data and change existing attributes, but you are
not permitted to create new dimensions, variables, or attributes.

One call tonc_def dim is needed for each dimension created. Similarly, one call tdef var
is needed for each variable creation, and one call to a memberaf the att family is needed

for each attribute defined and assigned a value. To leave define mode and enter data mode, call
nc_enddef.

Once in data mode, you can add new data to variables, change old values, and change values of

existing attributes (so long as the attribute changes do not require more storage space). Single val-
ues may be written to a netCDF variable with one of the membersmaf he var1 family,

depending on what type of data you have to write. All the values of a variable may be written at
once with one of the members of the put_var family. Arrays or array cross-sections of a vari-

able may be written using members of theput vara family. Subsampledrray sections may

be written using members of the put_vars family. Mappedarray sections may be written

using members of thec_put_varm family. (Subsampled and mapped access are general forms of
data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing by call-
ing nc_close. By default, access to the file system is buffered by the netCDF library. If a pro-
gram terminates abnormally with netCDF datasets open for writing, your most recent
modifications may be lost. This default buffering of data is disabled by setting the NC_SHARE
flag when opening the dataset. But even if this flag is set, changes to attribute values or changes
made in define mode are not written out umtilsync or nc_close is called.

4.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the nhames of not only the netCDF datasets, but also
the names of their dimensions, variables, and attributes. (Otherwise you would have to do
“inquire” calls.) The order of typical C calls to read data from those variables in a netCDF dataset
is:

nc_open [* open existing netCDF dataset */
nc_ing_dimid /* get dimension IDs */

nc_ing_varid [* get variable IDs */

nc_get_att [* get attribute values */
nc_get var /* get values of variables */
nc_close * close netCDF dataset */

First, a single call opens the netCDF dataset, given the dataset name, and returns a netCDF ID that
is used to refer to the open netCDF dataset in all subsequent calls.

Next, a call tanc_ing_dimid for each dimension of interest gets the dimension ID from the
dimension name. Similarly, each required variable ID is determined from its name by a call to
nc_ing_varid Once variable IDs are known, variable attribute values can be retrieved using the
netCDF ID, the variable ID, and the desired attribute name as input to a member of the
nc_get_att family (typically nc_get_att_text ornc_get_att_double) for each desired
attribute. Variable data values can be directly accessed from the netCDF dataset with calls to
members of thac_get_varl family for single values, thec_get_var family for entire vari-

ables, or various other members of tleeget_vara , nc_get_vars , ornc_get varm families for

array, subsampled or mapped access.

Finally, the netCDF dataset is closed withclose. There is no need to close a dataset open
only for reading.

4.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing every
variable, without needing to know in advance the names of these variables. Similarly, the names
of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF datasets by
calling inquire functions. These return information about a whole netCDF dataset, a dimension, a
variable, or an attribute. The following template illustrates how they are used:

nc_open /* open existing netCDF dataset */
né:inq /* find out what is in it */
n(.:._.inq_dim [* get dimension names, lengths */
n(.:._.inq_var [* get variable names, types, shapes */

nc_ing_atthame /* get attribute names */

n(.:._.inq_att [* get attribute types and lengths */
n(.:._.get_att /* get attribute values */
nc_.g.].et_var [* get values of variables */
nc_.(.:.lose /* close netCDF dataset */

As in the previous example, a single call opens the existing netCDF dataset, returning a netCDF
ID. This netCDF ID is given to the_ing routine, which returns the number of dimensions, the
number of variables, the number of global attributes, and the ID of the unlimited dimension, if
there is one.

All the inquire functions are inexpensive to use and require no I/O, since the information they pro-
vide is stored in memory when a netCDF dataset is first opened.

Dimension IDs use consecutive integers, beginning at 0. Also dimensions, once created, cannot be
deleted. Therefore, knowing the number of dimension IDs in a netCDF dataset means knowing all
the dimension IDs: they are the integers 0, 1, 2, ...up to the number of dimensions. For each
dimension ID, a call to the inquire functian ing_dim returns the dimension name and length.

Variable IDs are also assigned from consecutive integers 0, 1, 2, ... up to the number of variables.
These can be usednn_ing_var calls to find out the names, types, shapes, and the number of
attributes assigned to each variable.

Once the number of attributes for a variable is known, successive callsitq_attname return

the name for each attribute given the netCDF ID, variable ID, and attribute number. Armed with
the attribute name, a call to_ing_att returns its type and length. Given the type and length,
you can allocate enough space to hold the attribute values. Then a call to a member of the
nc_get_att family returns the attribute values.

Once the IDs and shapes of netCDF variables are known, data values can be accessed by calling a
member of thec_get varl family for single values, or members of theget var,
nc_get_vara, nc_get_vars, ornc_get_varmf or various kinds of array access.

4.4 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively altered. New dimensions, variables, and attributes
can be added or existing ones renamed, and existing attributes can be deleted. Existing dimen-
sions, variables, and attributes can be renamed. The following code template lists a typical
sequence of calls to add new netCDF components to an existing dataset:

nc_open [* open existing netCDF dataset */
nc_redef /* put it into define mode */
nc_def _dim [* define additional dimensions (if any) */

nc_def var /* define additional variables (if any) */

né:._.put_att [* define additional attributes (if any) */
nc._.e.nddef /* check definitions, leave define mode */

né:._.put_var /* provide values for new variables */
nc._.(;lose [* close netCDF dataset */

A netCDF dataset is first opened by theopen call. This call puts the open datasetata

mode which means existing data values can be accessed and changed, existing attributes can be
changed (so long as they do not grow), but nothing can be added. To add new netCDF dimensions,
variables, or attributes you must endefine modeby callingnc_redef . In define mode, call

nc_def dim to define new dimensionsg_def var to define new variables, and a member of the
nc_put_att family to assign new attributes to variables or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for consistency
and committing the changes to disk, by calliagenddef . If you do not wish to reenter data
mode, just calhc_close , which will have the effect of first calling:_enddef.

Until thenc_enddef call, you may back out of all the redefinitions made in define mode and
restore the previous state of the netCDF dataset by catliagort. You may also use the

nc_abort call to restore the netCDF dataset to a consistent state if the calldoddef fails. If

you have calledc_close from definition mode and the implied callro enddef fails,

nc_abort will automatically be called to close the netCDF dataset and leave it in its previous con-

sistent state (before you entered define mode).

At most one process should have a netCDF dataset open for writing at one time. The library is
designed to provide limited support for multiple concurrent readers with one writer, via disci-
plined use of the nc_sync function and the NC_SHARE flag. If a writer makes changes in define
mode, such as the addition of new variables, dimensions, or attributes, some means external to the
library is necessary to prevent readers from making concurrent accesses and to inform readers to
call nc_sync before the next access.

4.5 Error Handling

The netCDF library provides the facilities needed to handle errors in a flexible way. Each netCDF
function returns an integer status value. If the returned status value indicates an error, you may
handle it in any way desired, from printing an associated error message and exiting to ignoring the
error indication and proceeding (not recommended!). For simplicity, the examples in this guide
check the error status and call a separate function to handle any errors.

Thenc_strerror ~ function is available to convert a returned integer error status into an error mes-
sage string.

Occasionally, low-level 1/0O errors may occur in a layer below the netCDF library. For example, if
a write operation causes you to exceed disk quotas or to attempt to write to a device that is no
longer available, you may get an error from a layer below the netCDF library, but the resulting
write error will still be reflected in the returned status value.

4.6 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN interfaces
differ, depending on the operating system, the available compilers, and where the netCDF library
and include files are installed. Nevertheless, we provide here examples of how to compile and link
a program that uses the netCDF library on a Unix platform, so that you can adjust these examples
to fit your installation.

Every C file that references netCDF functions or constants must contain an apprapciade
statement before the first such reference:

#include <netcdf.h>

Unless thaenetcdf.h file is installed in a standard directory where the C compiler always looks,
you must use the option when invoking the compiler, to specify a directory whesedf.h is
installed, for example:

cc -c -l/usr/local/netcdf/include myprogram.c

Alternatively, you could specify an absolute path name imitleade statement, but then your
program would not compile on another platform where netCDF is installed in a different location.

Unless the netCDF library is installed in a standard directory where the linker always looks, you
must use the. and-I options to link an object file that uses the netCDF library. For example:

cc -0 myprogram myprogram.o -L/usr/local/netcdf/lib -Inetcdf
Alternatively, you could specify an absolute path name for the library:

cc -0 myprogram myprogram.o -l/usr/local/netcdf/lib/libnetcdf.a

5 Datasets

This chapter presents the interfaces of the netCDF functions that deal with a netCDF dataset or
the whole netCDF library.

A netCDF dataset that has not yet been opened can only be referred to by its dataset name. Once a
netCDF dataset is opened, it is referred to hgt€DF ID, which is a small nonnegative integer
returned when you create or open the dataset. A netCDF ID is much like a file descriptor in C or a
logical unit number in FORTRAN. In any single program, the netCDF IDs of distinct open

netCDF datasets are distinct. A single netCDF dataset may be opened multiple times and will then
have multiple distinct netCDF IDs; however at most one of the open instances of a single netCDF
dataset should permit writing. When an open netCDF dataset is closed, the ID is no longer associ-
ated with a netCDF dataset.

Functions that deal with the netCDF library include:

» Get version of library.
» Get error message corresponding to a returned error code.

The operations supported on a netCDF dataset as a single object are:

* Create, given dataset name and whether to overwrite or not.

* Open for access, given dataset name and read or write intent.

» Putinto define mode, to add dimensions, variables, or attributes.

» Take out of define mode, checking consistency of additions.

* Close, writing to disk if required.

* Inquire about the number of dimensions, number of variables, number of global attributes, and
ID of the unlimited dimension, if any.

* Synchronize to disk to make sure it is current.

» Set and unsetofill mode for optimized sequential writes.

After a summary of conventions used in describing the netCDF interfaces, the rest of this chapter
presents a detailed description of the interfaces for these operations.

5.1 NetCDF Library Interface Descriptions
Each interface description for a particular netCDF function in this and later chapters contains:

» adescription of the purpose of the function;

» a C function prototype that presents the type and order of the formal parameters to the func-
tion;

» adescription of each formal parameter in the C interface;

» alist of possible error conditions; and

» an example of a C program fragment calling the netCDF function (and perhaps other netCDF
functions).

The examples follow a simple convention for error handling, always checking the error status
returned from each netCDF function call and callimgraile_error ~ function in case an error

was detected. For an example of such a function, see Section 5.2 “Get error message correspond-
ing to error statusic_strerror NF_STRERROR " page 32.

5.2 Get error message corresponding to error statusic_strerror

The functiomc_strerror returns a static reference to an error message string corresponding to
an integer netCDF error status or to a system error number, presumably returned by a previous
call to some other netCDF function. The list of netCDF error status codes is available in the
appropriate include file for each language binding.

Usage

const char * nc_strerror(int ncerr);

ncerr An error status that might have been returned from a previous call to some
netCDF function.

Errors

If you provide an invalid integer error status that does not correspond to any netCDF error mes-
sage or or to any system error message (as understood by thessgst@m function),
nc_strerror returns a string indicating that there is no such error status.

Example

Here is an example of a simple error handling function thatrgseerror ~ to print the error
message corresponding to the netCDF error status returned from any netCDF function call and
then exit:

#include <netcdf.h>

void handle_error(int status) {

if (status != NC_NOERR) {
fprintf(stderr, "%s\n", nc_strerror(status));
exit(-1);
}

}

5.3 Get netCDF library version:nc_ing_libvers

The functiomnc_ing_libvers returns a string identifying the version of the netCDF library, and
when it was built.

Usage

const char * nc_ing_libvers(void);

Errors

This function takes no arguments, and thus no errors are possible in its invocation.
Example

Here is an example using_ing_libvers to print the version of the netCDF library with which
the program is linked:

#include <netcdf.h>

printf("%s\n", nc_ing_libvers());

5.4 Create a NetCDF datasetc_create

This function creates a new netCDF dataset, returning a netCDF ID that can subsequently be used
to refer to the netCDF dataset in other netCDF function calls. The new netCDF dataset opened for
write access and placed in define mode, ready for you to add dimensions, variables, and attributes.

A creation mode flag specifies whether to overwrite any existing dataset with the same name and
whether access to the dataset is shared.

Usage

int nc_create (const char* path, int cmode, int *ncidp);

path The file name of the new netCDF dataset.

cmode The creation mode. A zero value (ar_CLOBBERspecifies the default
behavior: overwrite any existing dataset with the same file name and buffer
and cache accesses for efficiency.
Otherwise, the creation modeNs _NOCLOBBERIC_SHAREOr
NC_NOCLOBBER|NC_SHARS&etting theNC_NOCLOBBERag means you do not
want to clobber (overwrite) an existing dataset; an eNOrgexIsT) is
returned if the specified dataset already exists NChsHARHIag is appro-
priate when one process may be writing the dataset and one or more other
processes reading the dataset concurrently; it means that dataset accesses are
not buffered and caching is limited. Since the buffering scheme is optimised
for sequential access, programs that do not access data sequentially may see
some performance improvement by settinghbesHARHlag.

ncidp Pointer to location where returned netCDF ID is to be stored.

Errors
nc_create returns the valussC_NOERHMK no errors occurred. Possible causes of errors include:

» Passing a dataset name that includes a directory that does not exist.

» Specifying a dataset name of a file that exists and also specifginpCLOBBER

» Specifying a meaningless value for the creation mode.

» Attempting to create a netCDF dataset in a directory where you don’t have permission to cre-
ate files.

Example

In this example we create a netCDF dataset namned ; we want the dataset to be created in
the current directory only if a dataset with that name does not already exist:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

5.5 Open a NetCDF Dataset for Accessic_open
The functiomc_open opens an existing netCDF dataset for access.
Usage

int nc_open (const char *path, int omode, int *ncidp);

path File name for netCDF dataset to be opened.

omode A zero value (ONC_NOWRITESpecifies the default behavior: open the
dataset with read-only access, buffering and caching accesses for efficiency
Otherwise, the creation modeNs_WRITE NC_SHAREOr
NC_WRITE|NC_SHARESetting theNC_WRITEflag opens the dataset with read-
write access. (“Writing” means any kind of change to the dataset, including
appending or changing data, adding or renaming dimensions, variables, and
attributes, or deleting attributes.) TRe_SHARHlag is appropriate when one
process may be writing the dataset and one or more other processes reading
the dataset concurrently; it means that dataset accesses are not buffered and
caching is limited. Since the buffering scheme is optimised for sequential
access, programs that do not access data sequentially may see some perfor-
mance improvement by setting the_SHARHlag.

ncidp Pointer to location where returned netCDF ID is to be stored.

Errors

nc_open returns the valueC_NOERM no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

* The specified netCDF dataset does not exist.
* A meaningless mode was specified.

Example

Here is an example usimg_open to open an existing netCDF dataset namedc for read-
only, non-shared access:

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc", 0, &ncid);
if (status '= NC_NOERR) hendle_error(status);

5.6 Put Open NetCDF Dataset into Define Modeic_redef

The functiomc_redef puts an open netCDF dataset into define mode, so dimensions, variables,
and attributes can be added or renamed and attributes can be deleted.

Usage

int nc_redef(int ncid);

ncid netCDF ID, from a previous call t@_open ornc_create
Errors

nc_redef returns the valu’C_NOERW no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

* The specified netCDF dataset is already in define mode.
* The specified netCDF dataset was opened for read-only.
* The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using_redef to open an existing netCDF dataset narfuechc and put it
into define mode:

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc”, NC_WRITE, &ncid); /* open dataset */
if (status '= NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* put in define mode */

if (status '= NC_NOERR) handle_error(status);

5.7 Leave Define Modenc_enddef

The functionnc_enddef takes an open netCDF dataset out of define mode. The changes made to
the netCDF dataset while it was in define mode are checked and committed to disk if no problems
occurred. Non-record variables may be initialized to a “fill value” as well (see Section 5.12 “Set
Fill Mode for Writes:nc_set_fill NF_SET_FILL , page 46). The netCDF dataset is then
placed in data mode, so variable data can be read or written.

This call may involve copying data under some circumstances. See Chapter 9 “NetCDF File
Structure and Performance,” page 131, for a more extensive discussion.

Usage

int nc_enddef(int ncid);

ncid NetCDF ID, from a previous call i@_open oOrnc_create
Errors

nc_enddef returns the valussC_NOERHMK no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

» The specified netCDF dataset is not in define mode.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_enddef to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status '= NC_NOERR) handle_error(status);

[* create dimensions, variables, attributes */

status = nc_enddef(ncid); /*leave define mode*/
if (status '= NC_NOERR) handle_error(status);

5.8 Close an Open NetCDF Datasefic_close

The functiomc_close closes an open netCDF dataset. If the dataset is in define mode,

nc_enddef will be called before closing. (In this casendf enddef returns an erronc_abort

will automatically be called to restore the dataset to the consistent state before define mode was
last entered.) After an open netCDF dataset is closed, its netCDF ID may be reassigned to the next
netCDF dataset that is opened or created.

Usage

int nc_close(int ncid);

ncid NetCDF ID, from a previous call i@_open or nc_create
Errors

nc_close returns the valu®C_NOERW no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

» Define mode was entered and the automatic call madedoaddef failed.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_close to finish the definitions of a new netCDF dataset named
foo.nc and release its netCDF ID:

#include <netcdf.h>

int status;
int ncid;

status = nc_create("foo.nc”, NC_NOCLOBBER, &ncid);
if (status '= NC_NOERR) handle_error(status);

[* create dimensions, variables, attributes */

status = nc_close(ncid); /* close netCDF dataset */
if (status '= NC_NOERR) handle_error(status);

5.9 Inquire about an Open NetCDF Datasetnc_inq Family

Members of thec_ing family of functions return information about an open netCDF dataset,
given its netCDF ID. Dataset inquire functions may be called from either define mode or data

mode. The first functiomc_ing , returns values for the number of dimensions, the number of
variables, the number of global attributes, and the dimension ID of the dimension defined with
unlimited length, if any. The other functions in the family each return just one of these items of
information.

For C, these functions include inq , nc_ing_ndims , nc_inq_nvars ,nc_ing_natts , and
nc_ing_unlimdim

No I/O is performed when these functions are called, since the required information is available in
memory for each open netCDF dataset.

Usage

int nc_inq (int ncid, int *ndimsp, int *nvarsp, int *ngattsp,
int *unlimdimidp);

int nc_ing_ndims (int ncid, int *ndimsp);
int nc_ing_nvars (int ncid, int *nvarsp);
int nc_ing_natts (int ncid, int *ngattsp);

int nc_ing_unlimdim (int ncid, int *unlimdimidp);

ncid NetCDF ID, from a previous call t@_open or nc_create

ndimsp Pointer to location for returned number of dimensions defined for this
netCDF dataset.

nvarsp Pointer to location for returned number of variables defined for this netCDF
dataset.

ngattsp Pointer to location for returned number of global attributes defined for this

netCDF dataset.

unlimdimidp Pointer to location for returned ID of the unlimited dimension, if there is one
for this netCDF dataset. If no unlimited length dimension has been defined, -
1 is returned.

Errors

All members of thexc_ing family return the valueiC_NOERRTf no errors occurred. Otherwise,
the returned status indicates an error. Possible causes of errors include:

» The specified netCDF ID does not refer to an open netCDF dataset.
Example

Here is an example usimg_ing to find out about a netCDF dataset narieethc

#include <netcdf.h>
int status, ncid, ndims, nvars, ngatts, unlimdimid;

status = nc_open("foo.nc”, NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing(ncid, &ndims, &nvars, &ngatts, &unlimdimid);
if (status '= NC_NOERR) handle_error(status);

5.10 Synchronize an Open NetCDF Dataset to Diskc_sync

The functiomc_sync offers a way to synchronize the disk copy of a netCDF dataset with in-
memory buffers. There are two reasons you might want to synchronize after writes:

* To minimize data loss in case of abnormal termination, or

» To make data available to other processes for reading immediately after it is written. But note
that a process that already had the dataset open for reading would not see the number of
records increase when the writing process @allsync ; to accomplish this, the reading pro-
cess must callc_sync .

This function is backward-compatible with previous versions of the netCDF library. The intent
was to allow sharing of a netCDF dataset among multiple readers and one writer, by having the
writer callnc_sync after writing and the readers cali_sync before each read. For a writer, this
flushes buffers to disk. For a reader, it makes sure that the next read will be from disk rather than
from previously cached buffers, so that the reader will see changes made by the writing process
(e.g., the number of records written) without having to close and reopen the dataset. If you are
only accessing a small amount of data, it can be expensive in computer resources to always syn-
chronize to disk after every write, since you are giving up the benefits of buffering.

An easier way to accomplish sharing (and what is now recommended) is to have the writer and
readers open the dataset with the NC_SHARE flag, and then it will not be necessary to call
nc_sync at all. However, thec_sync function still provides finer granularity than the

NC_SHARE flag, if only a few netCDF accesses need to be synchronized among processes.

It is important to note that changes to the ancillary data, such as attribute valnespeopa-
gated automatically by use of the NC_SHARE flag. Use afd¢hsgnc function is still required
for this purpose.

Sharing datasets when the writer enters define mode to change the data schema requires extra
care. In previous releases, after the writer left define mode, the readers were left looking at an old
copy of the dataset, since the changes were made to a new copy. The only way readers could see
the changes was by closing and reopening the dataset. Now the changes are made in place, but
readers have no knowledge that their internal tables are now inconsistent with the new dataset
schema. If netCDF datasets are shared across redefinition, some mechanism external to the
netCDF library must be provided that prevents access by readers during redefinition and causes
the readers to calk_sync before any subsequent access.

When callingnc_sync , the netCDF dataset must be in data mode. A netCDF dataset in define
mode is synchronized to disk only whet) enddef is called. A process that is reading a netCDF
dataset that another process is writing may walbync to get updated with the changes made to

the data by the writing process (e.g., the number of records written), without having to close and
reopen the dataset.

Data is automatically synchronized to disk when a netCDF dataset is closed, or whenever you
leave define mode.

Usage

int nc_sync(int ncid);

ncid NetCDF ID, from a previous call i@_open or nc_create
Errors

nc_sync returns the valueC_NOERK no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

* The netCDF dataset is in define mode.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_sync to synchronize the disk writes of a netCDF dataset named
foo.nc

#include <netcdf.h>

int status;
int ncid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status '= NC_NOERR) handle_error(status);

[* write data or change attributes */

status = nc_sync(ncid); /* synchronize to disk */
if (status '= NC_NOERR) handle_error(status);

5.11 Back Out of Recent Definitionsnc_abort

You no longer need to call this function, since it is called automaticaliy lajose in case the
dataset is in define mode and something goes wrong with committing the changes. The function
nc_abort just closes the netCDF dataset, if not in define mode. If the dataset is being created and
is still in define mode, the dataset is deleted. If define mode was entered by acalttef , the
netCDF dataset is restored to its state before definition mode was entered and the dataset is

closed.
Usage

int nc_abort(int ncid);

ncid NetCDF ID, from a previous call i@_open or nc_create
Errors

nc_abort returns the valu®C_NOERW no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

* When called from define mode while creating a netCDF dataset, deletion of the dataset failed.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_abort to back out of redefinitions of a dataset nareetic
#include <netcdf.h>
inf 'r'u:id, status, latid;

status = nc_open("foo.nc", NC_WRITE, &ncid);/* open for writing */
if (status '= NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* enter define mode */
if (status '= NC_NOERR) handle_error(status);

status = nc_def_dim(ncid, "lat", 18L, &latid);

if (status '= NC_NOERR) {
handle_error(status);
status = nc_abort(ncid); /* define failed, abort */
if (status != NC_NOERR) handle_error(status);

}

5.12 Set Fill Mode for Writes:nc_set_fill

This function is intended for advanced usage, to optimize writes under some circumstances
described below. The functiomre_set_fill sets thdill modefor a netCDF dataset open for writ-

ing and returns the current fill mode in a return parameter. The fill mode can be specified as either
NC_FILL or NC_NOFILL. The default behavior corresponding\to_FILL is that data is pre-filled

with fill values, that is fill values are written when you create non-record variables or when you
write a value beyond data that has not yet been written. This makes it possible to detect attempts
to read data before it was written. See Section 7.16 “Fill Values,” page 106, for more information
on the use of fill values. See Section 8.1 “Attribute Conventions,” page 109, for information about
how to define your own fill values.

The behavior correspondingi@_NOFILL overrides the default behavior of prefilling data with
fill values. This can be used to enhance performance, because it avoids the duplicate writes that
occur when the netCDF library writes fill values that are later overwritten with data.

A value indicating which mode the netCDF dataset was already in is returned. You can use this
value to temporarily change the fill mode of an open netCDF dataset and then restore it to the pre-
vious mode.

After you turn onNC_NOFILL mode for an open netCDF dataset, you must be certain to write valid
data in all the positions that will later be read. Note that nofill mode is only a transient property of
a netCDF dataset open for writing: if you close and reopen the dataset, it will revert to the default
behavior. You can also revert to the default behavior by caltingt_fill again to explicitly

set the fill mode toiC_FILL .

There are three situations where it is advantageous to set nofill mode:

1. Creating and initializing a netCDF dataset. In this case, you should set nofill mode before call-
ing nc_enddef and then writecompletelyall non-record variables and the initial records of all
the record variables you want to initialize.

2. Extending an existing record-oriented netCDF dataset. Set nofill mode after opening the
dataset for writing, then append the additional records to the dataset completely, leaving no
intervening unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF dataset. Set nofill
mode before callingc_enddef then write all the new variables completely.

If the netCDF dataset has an unlimited dimension and the last record was written while in nofill
mode, then the dataset may be shorter than if nofill mode was not set, but this will be completely
transparent if you access the data only through the netCDF interfaces.

The use of this feature may not be available (or even needed) in future releases. Programmers are
cautioned against heavy reliance upon this feature.

Usage

int nc_set fill (int ncid, int fillmode, int *old_modep];

ncid NetCDF ID, from a previous call i@_open or nc_create
fillmode Desired fill mode for the dataset, eitih& NOFILL or NC_FILL .
old_modep Pointer to location for returned current fill mode of the dataset before this

call, eitherNC_NOFILL or NC_FILL .
Errors

nc_set_fill returns the valusCc_NOERHMK no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

» The specified netCDF ID does not refer to an open netCDF dataset.

» The specified netCDF ID refers to a dataset open for read-only access.
* The fill mode argument is neitheC_NOFILL nOr NC_FILL ..

Example

Here is an example usimg_set_fill to set nofill mode for subsequent writes of a netCDF
dataset nameido.nc

#include <netcdf.h>
int ncid, status, old_fill_mode;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status '= NC_NOERR) handle_error(status);

[* write data with default prefilling behavior */

status = nc_set_fill(ncid, NC_NOFILL, &old_fill_mode); /* set nofill */
if (status '= NC_NOERR) handle_error(status);

[* write data with no prefilling */

6 Dimensions

Dimensions for a netCDF dataset are defined when it is created, while the netCDF dataset is in
define mode. Additional dimensions may be added later by reentering define mode. A netCDF
dimension has a name and a length. At most one dimension in a netCDF dataset can have the
unlimited length, which means variables using this dimension can grow along this dimension.

There is a suggested limit (100) to the number of dimensions that can be defined in a single
netCDF dataset. The limit is the value of the predefined macramax_bpiMs. The purpose of the

limit is to make writing generic applications simpler. They need only provide an array of
NC_MAX_DIMSdimensions to handle any netCDF dataset. The implementation of the netCDF
library does not enforce this advisory maximum, so it is possible to use more dimensions, if nec-
essary, but netCDF utilities that assume the advisory maximums may not be able to handle the
resulting netCDF datasets.

Ordinarily, the name and length of a dimension are fixed when the dimension is first defined. The
name may be changed later, but the length of a dimension (other than the unlimited dimension)
cannot be changed without copying all the data to a new netCDF dataset with a redefined dimen-
sion length.

Dimension lengths in the C interface are type t rather than typat to make it possible to
access all the data in a netCDF dataset on a platform that only supports arit 6-déita type, for
example MSDOS. If dimension lengths were tyfpe instead, it would not be possible to access
data from variables with a dimension length greater than a IiG-bitan accommodate.

A netCDF dimension in an open netCDF dataset is referred to by a small integer dated-a
sion ID. In the C interface, dimension IDs are 0, 1, 2, ..., in the order in which the dimensions
were defined.

Operations supported on dimensions are:

» Create a dimension, given its name and length.
* Get adimension ID from its name.

* Get a dimension’s name and length from its ID.
* Rename a dimension.

6.1 Create a Dimensionnc_def _dim

The functiomc_def_dim adds a new dimension to an open netCDF dataset in define mode. It
returns (as an argument) a dimension ID, given the netCDF ID, the dimension name, and the
dimension length. At most one unlimited length dimension, called the record dimension, may be
defined for each netCDF dataset.

Usage

int nc_def_dim (int ncid, const char *name, size_t len, int *dimidp);

ncid NetCDF ID, from a previous call t@_open or nc_create

name Dimension name. Must begin with an alphabetic character, followed by zero
or more alphanumeric characters including the underscdyease is sig-
nificant.

len Length of dimension; that is, number of values for this dimension as an

index to variables that use it. This should be either a positive integer (of type
size_t) or the predefined constant_UNLIMITED.

dimidp Pointer to location for returned dimension ID.
Errors

nc_def dim returns the valusiC_NOERH no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

* The netCDF dataset is not in definition mode.

* The specified dimension name is the name of another existing dimension.

* The specified length is not greater than zero.

» The specified length is unlimited, but there is already an unlimited length dimension defined
for this netCDF dataset.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using_def dim to create a dimension named of length 18 and a unlim-
ited dimension namedc in a new netCDF dataset naniednc

#include <netcdf.h>
int status, ncid, latid, recid;

status = nc_create("foo.nc”, NC_NOCLOBBER, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_def_dim(ncid, "lat", 18L, &latid);

if (status '= NC_NOERR) handle_error(status);

status = nc_def_dim(ncid, "rec”, NC_UNLIMITED, &recid);
if (status '= NC_NOERR) handle_error(status);

6.2 Geta Dimension ID from Its Namenc_ing_dimid

The functiomc_ing_dimid returns (as an argument) the ID of a netCDF dimension, given the
name of the dimension. dflims is the number of dimensions defined for a netCDF dataset, each
dimension has an ID betweerandndims-1.

Usage

int nc_ing_dimid (int ncid, const char *name, int *dimidp);

ncid NetCDF ID, from a previous call i@_open oOrnc_create

name Dimension name, a character string beginning with a letter and followed by
any sequence of letters, digits, or underscorg ¢haracters. Case is signif-
icant in dimension names.

dimidp Pointer to location for the returned dimension ID.
Errors

nc_ing_dimid returns the valusC_NOERH no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* The name that was specified is not the name of a dimension in the netCDF dataset.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_ing_dimid to determine the dimension ID of a dimension named
lat , assumed to have been defined previously in an existing netCDF datasetdsammed

#include <netcdf.h>
int status, ncid, latid;

status = nc_open("foo.nc", NC_NOWRITE, &ncid); /* open for reading */
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_dimid(ncid, "lat", &latid);

if (status '= NC_NOERR) handle_error(status);

6.3 Inquire about a Dimension:nc_ing_dim Family

This family of functions returns information about a netCDF dimension. Information about a
dimension includes its name and its length. The length for the unlimited dimension, if any, is the
number of records written so far.

The functions in this family includ&_ing_dim , nc_ing_dimname , andnc_ing_dimlen . The
functionnc_ing_dim returns all the information about a dimension; the other functions each
return just one item of information.

Usage

int nc_ing_dim (int ncid, int dimid, char* name, size_t* lengthp);

int nc_ing_dimname (int ncid, int dimid, char *name);

int nc_ing_dimlen (int ncid, int dimid, size_t *lengthp);

ncid NetCDF ID, from a previous call t@_open or nc_create
dimid Dimension ID, from a previous call te_ing_dimid or nc_def_dim
name Returned dimension name. The caller must allocate space for the returned

name. The maximum possible length, in characters, of a dimension name is
given by the predefined constat_MAX_NAME

lengthp Pointer to location for returned length of dimension. For the unlimited
dimension, this is the number of records written so far.

Errors

These functions return the valNe _NOER® no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

» The dimension ID is invalid for the specified netCDF dataset.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using_ing_dim to determine the length of a dimension named, and the
name and current maximum length of the unlimited dimension for an existing netCDF dataset
namedoo.nc

#include <netcdf.h>

int status, ncid, latid, recid;
size_t latlength, recs;
char recname[NC_MAX_NAME];

status = nc_open("foo.nc", NC_NOWRITE, &ncid); /* open for reading */
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_unlimdim(ncid, &recid); /* get ID of unlimited dimension */
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_dimid(ncid, "lat", &latid); /* get ID for lat dimension */
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_dimlen(ncid, latid, &latlength); /* get lat length */

if (status '= NC_NOERR) handle_error(status);

/* get unlimited dimension name and current length */

status = nc_ing_dim(ncid, recid, recname, &recs);

if (status '= NC_NOERR) handle_error(status);

6.4 Rename a Dimensionnc_rename_dim

The functiomnc_rename_dim renames an existing dimension in a netCDF dataset open for writ-
ing. If the new name is longer than the old name, the netCDF dataset must be in define mode. You
cannot rename a dimension to have the same name as another dimension.

Usage

int nc_rename_dim(int ncid, int dimid, const char* name);

ncid NetCDF ID, from a previous call t@_open or nc_create
dimid Dimension ID, from a previous call te_ing_dimid or nc_def_dim
name New dimension name.

Errors

nc_rename_dim returns the valuBC_NOERK no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* The new name is the name of another dimension.

» The dimension ID is invalid for the specified netCDF dataset.

» The specified netCDF ID does not refer to an open netCDF dataset.

* The new name is longer than the old name and the netCDF dataset is not in define mode.

Example

Here is an example usimg_rename_dim to rename the dimensidm tolatitude in an exist-
ing netCDF dataset namew.nc

#include <netcdf.h>
int status, ncid, latid;

status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* put in define mode to rename dimension */
if (status != NC_NOERR) handle_error(status);

status = nc_ing_dimid(ncid, "lat", &latid);

if (status != NC_NOERR) handle_error(status);

status = nc_rename_dim(ncid, latid, "latitude™);

if (status != NC_NOERR) handle_error(status);

status = nc_enddef(ncid); /* leave define mode */

if (status != NC_NOERR) handle_error(status);

7 Variables

Variables for a netCDF dataset are defined when the dataset is created, while the netCDF dataset

is in define mode. Other variables may be added later by reentering define mode. A netCDF vari-
able has a name, a type, and a shape, which are specified when it is defined. A variable may also
have values, which are established later in data mode.

Ordinarily, the name, type, and shape are fixed when the variable is first defined. The name may
be changed, but the type and shape of a variable cannot be changed. However, a variable defined
in terms of the unlimited dimension can grow without bound in that dimension.

A netCDF variable in an open netCDF dataset is referred to by a small integer valtebke
ID.

Variable IDs reflect the order in which variables were defined within a netCDF dataset. Variable
IDs are 0, 1, 2,..., in the order in which the variables were defined. A function is available for get-
ting the variable 1D from the variable name and vice-versa.

Attributes (see Chapter 8 “Attributes,” page 109) may be associated with a variable to specify
such properties as units.

Operations supported on variables are:

» Create a variable, given its name, data type, and shape.

* Getavariable ID from its name.

* Get a variable’s name, data type, shape, and number of attributes from its ID.

* Put a data value into a variable, given variable ID, indices, and value.

» Put an array of values into a variable, given variable ID, corner indices, edge lengths, and a
block of values.

* Putasubsampled or mapped array-section of values into a variable, given variable ID, corner
indices, edge lengths, stride vector, index mapping vector, and a block of values.

» Get a data value from a variable, given variable ID and indices.

» Get an array of values from a variable, given variable 1D, corner indices, and edge lengths.

* Getasubsampled or mapped array-section of values from a variable, given variable ID, corner
indices, edge lengths, stride vector, and index mapping vector.

* Rename a variable.

7.1 Language Types Corresponding to netCDF external data types

The following table gives the netCDF external data types and the corresponding type constants for
defining variables in the C interface:

netCDF/CDL Data C APl Mnemonic Bits
Type
byte NC_BYTE 8
char NC_CHAR 8
short NC_SHORT 16
int NC_INT 32
float NC_FLOAT 32
double NC_DOUBLE 64

The first column gives the netCDF external data type, which is the same as the CDL data type.
The next column gives the corresponding C preprocessor macro for use in netCDF functions (the
preprocessor macros are defined in the netCDF C headesddeh). The last column gives

the number of bits used in the external representation of values of the corresponding type.

Note that there are no netCDF types corresponding to 64-bit integers or to characters wider than 8
bits in the current version of the netCDF library.
7.2 Create a Variable:nc_def var

The functiomc_def_var adds a new variable to an open netCDF dataset in define mode. It
returns (as an argument) a variable ID, given the netCDF ID, the variable name, the variable type,
the number of dimensions, and a list of the dimension IDs.

Usage

int nc_def_var (int ncid, const char *name, nc_type xtype,
int ndims, const int dimids[], int *varidp);

ncid NetCDF ID, from a previous call i@_open oOrnc_create

name Variable name. Must begin with an alphabetic character, followed by zero or
more alphanumeric characters including the underscdjeCase is signif-
icant.

xtype One of the set of predefined netCDF external data types. The type of this

parametemc_type , is defined in the netCDF header file. The valid netCDF
external data types ake&&_BYTE NC_CHARNC_SHORTNC_INT, NC_FLOAT
andNC_DOUBLE

ndims Number of dimensions for the variable. For examplgpecifies a matrix,
specifies a vector, artdmeans the variable is a scalar with no dimensions.
Must not be negative or greater than the predefined constant
NC_MAX_VAR_DIMS

dimids Vector ofndims dimension IDs corresponding to the variable dimensions. If
the ID of the unlimited dimension is included, it must be first. This argument
is ignored ifndims iso0.

varidp Pointer to location for the returned variable ID.

Errors

nc_def var returns the valuaiC_NOERHK no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

* The netCDF dataset is not in define mode.

» The specified variable name is the name of another existing variable.

* The specified type is not a valid netCDF type.

» The specified number of dimensions is negative or more than the constawhX_VAR_DIMS
the maximum number of dimensions permitted for a netCDF variable.

e One or more of the dimension IDs in the list of dimensions is not a valid dimension ID for the
netCDF dataset.

* The number of variables would exceed the constanMMAX_VARShe maximum number of
variables permitted in a netCDF dataset.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_def_var to create a variable named of typedouble with three
dimensionstime , lat , andion in a new netCDF dataset naniegalnc

#include <netcdf.h>

int status; /* error status */

int ncid; [* netCDF ID */

int lat_dim, lon_dim, time_dim; /* dimension IDs */
int rh_id; /* variable 1D */

int rh_dimids[3]; [* variable shape */

status = nc_create("foo.nc”, NC_NOCLOBBER, &ncid);
if (status '= NC_NOERR) handle_error(status);

/* define dimensions */
status = nc_def_dim(ncid, "lat", 5L, &lat_dim);
if (status '= NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "lon", 10L, &lon_dim);
if (status '= NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "time", NC_UNLIMITED, &time_dim);
if (status '= NC_NOERR) handle_error(status);

/* define variable */
rh_dimids[0] = time_dim;
rh_dimids[1] = lat_dim;
rh_dimids[2] = lon_dim;
status = nc_def _var (ncid, "rh", NC_DOUBLE, 3, rh_dimids, &rh_id);
if (status '= NC_NOERR) handle_error(status);

7.3 Get a Variable ID from Its Name:nc_inq_varid
The functiomc_ing_varid returns the ID of a netCDF variable, given its name.

Usage

int nc_ing_varid (int ncid, const char *name, int *varidp);

ncid NetCDF ID, from a previous call i@_open oOrnc_create
name Variable name for which ID is desired.
varidp Pointer to location for returned variable ID.

Errors

nc_ing_varid returns the valusC_NOERRTf no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

» The specified variable name is not a valid name for a variable in the specified netCDF dataset.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_ing_varid to find out the ID of a variable named in an existing
netCDF dataset nameésb.nc

#include <netcdf.h>
int status, ncid, rh_id;

status = nc_open("foo.nc”, NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

7.4 Get Information about a Variable from Its ID: nc_inq_var family

A family of functions that returns information about a netCDF variable, given its ID. Information
about a variable includes its name, type, number of dimensions, a list of dimension IDs describing

the shape of the variable, and the number of variable attributes that have been assigned to the vari-
able.

The functiomnc_ing_var returns all the information about a netCDF variable, given its ID. The
other functions each return just one item of information about a variable.

These other functions include inq_varname , nc_ing_vartype , nc_ing_varndims
nc_ing_vardimid , andnc_ing_varnatts

Usage

int nc_ing_var (int ncid, int varid, char *name, nc_type *xtypep,
int *ndimsp, int dimidsf[], int *nattsp);

int nc_ing_varname (int ncid, int varid, char *name);
int nc_ing_vartype (int ncid, int varid, nc_type *xtypep);
int nc_ing_varndims (int ncid, int varid, int *ndimsp);

int nc_ing_vardimid (int ncid, int varid, int dimids[]);

int nc_ing_varnatts (int ncid, int varid, int *nattsp);

ncid NetCDF ID, from a previous call i@_open oOrnc_create
varid Variable ID.
name Returned variable name. The caller must allocate space for the returned

name. The maximum possible length, in characters, of a variable name is
given by the predefined constan@_MAX_NAME

xtypep Pointer to location for returned variable type, one of the set of predefined
netCDF external data types. The type of this paramedetype , is defined
in the netCDF header file. The valid netCDF external data types are
NC_BYTE NC_CHARNC_SHORTNC_INT, NC_FLOAT andNC_DOUBLE

ndimsp Pointer to location for returned number of dimensions the variable was
defined as using. For exampfeindicates a matrixi indicates a vector, and
0 means the variable is a scalar with no dimensions.

dimids Returned vector ohdimsp dimension IDs corresponding to the variable
dimensions. The caller must allocate enough space for a vector of at least
*ndimsp integers to be returned. The maximum possible number of dimen-
sions for a variable is given by the predefined constantlAX_VAR_DIMS

nattsp Pointer to location for returned number of variable attributes assigned to this
variable.

Errors

These functions return the valNe_NOERRTf no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.
* The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_ing_var to find out about a variable namexdin an existing
netCDF dataset namésb.nc

#include <netcdf.h>

int status [* error status */

int ncid; /* netCDF ID */

int rh_id; /* variable 1D */

nc_type rh_type; /* variable type */

int rh_ndims; /* number of dims */

int rh_dims[NC_MAX_VAR_DIMS]; /* variable shape */
int rh_natts /* number of attributes */

status = nc_open (“foo.nc", NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

if (status '= NC_NOERR) handle_error(status);

/* we don’t need name, since we already know it */

status = nc_ing_var (ncid, rh_id, 0, &rh_type, &rh_ndims, rh_dims,
&rh_natts);

if (status '= NC_NOERR) handle_error(status);

7.5 Write a Single Data Valuenc_put varl type

The functionsic_put_varl_ type put a single data value of the specifigoeinto a variable of

an open netCDF dataset that is in data mode. Inputs are the netCDF ID, the variable ID, an index
that specifies which value to add or alter, and the data value. The value is converted to the external
data type of the variable, if necessary.

Usage

int nc_put_varl_text (int ncid, int varid, const size_t index[],
const char *tp);

int nc_put_varl_uchar (int ncid, int varid, const size_t index{],
const unsigned char *up);

int nc_put_varl_schar (int ncid, int varid, const size_t index(],
const signed char *cp);

int nc_put_varl_short (int ncid, int varid, const size_t index[],
const short *sp);

int nc_put_varl_int (int ncid, int varid, const size_t index(],
const int *ip);

int nc_put_varl_long (int ncid, int varid, const size_t index(],
const long *Ip);

int nc_put_varl_float (int ncid, int varid, const size_t index([],
const float *fp);

int nc_put_varl_double(int ncid, int varid, const size_t index]],
const double *dp);

ncid NetCDF ID, from a previous call t@_open or nc_create
varid Variable ID.
index[] The index of the data value to be written. The indices are relative to 0, so for

example, the first data value of a two-dimensional variable would have index
(0,0) . The elements dhdex must correspond to the variable’s dimensions.
Hence, if the variable uses the unlimited dimension, the first index would
correspond to the unlimited dimension.

tp, up, cp, Pointer to the data value to be written. If the type of data values differs from
sp, ip, Ip, the netCDF variable type, type conversion will occur. See Section 3.3 “Type
fp, or dp Conversion,” page 20, for details.

Errors

nc_put_varl_ type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

* The specified indices were out of range for the rank of the specified variable. For example, a
negative index or an index that is larger than the corresponding dimension length will cause an
error.

* The specified value is out of the range of values representable by the external data type of the
variable.

* The specified netCDF is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using_put varl_double to setthg1,2,3) element of the variable named
rh t00.5 in an existing netCDF dataset nanfednc . For simplicity in this example, we assume
that we know thath is dimensioned witkime , lat , andion , SO we want to set the valuerbf
that corresponds to the secaing value, the thirdat value, and the fourtlon value:

#include <netcdf.h>

int status; [* error status */

int ncid; /* netCDF ID */

int rh_id; [* variable 1D */

static size_t rh_index[] = {1, 2, 3}; /* where to put value */
static double rh_val = 0.5; /* value to put */

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

status = nc_put_varl_double(ncid, rh_id, rh_index, &rh_val);
if (status '= NC_NOERR) handle_error(status);

7.6 Write an Entire Variable: nc_put var_ type

Thenc_put_var_ type family of functions write all the values of a variable into a netCDF vari-

able of an open netCDF dataset. This is the simplest interface to use for writing a value in a scalar

variable or whenever all the values of a multidimensional variable can all be written at once. The

values to be written are associated with the netCDF variable by assuming that the last dimension
of the netCDF variable varies fastest in the C interface. The values are converted to the external

data type of the variable, if necessary.

Usage

int nc_put_var_text (int ncid, int varid, const char *tp);

int nc_put_var_uchar (int ncid, int varid, const unsigned char *up);
int nc_put_var_schar (int ncid, int varid, const signed char *cp);
int nc_put_var_short (int ncid, int varid, const short *sp);

int nc_put_var_int (int ncid, int varid, const int *ip);

int nc_put_var_long (int ncid, int varid, const long *Ip);

int nc_put_var_float (int ncid, int varid, const float *fp);

int nc_put_var_double(int ncid, int varid, const double *dp);

ncid NetCDF ID, from a previous call t@_open or nc_create

varid Variable ID.

tp, up, cp, Pointer to a block of data values to be written. The order in which the data
sp, ip, Ip, will be written to the netCDF variable is with the last dimension of the spec-

fp, or dp ified variable varying fastest. If the type of data values differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 20, for detalils.
Errors

Members of thec_put_var_ type family return the valueiC_NOERRTf no errors occurred. Oth-
erwise, the returned status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

» One or more of the specified values are out of the range of values representable by the external
data type of the variable.

» One or more of the specified values are out of the range of values representable by the external
data type of the variable.

* The specified netCDF dataset is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_put_var_double to add or change all the values of the variable
namedh to0.5 in an existing netCDF dataset nanfealnc . For simplicity in this example, we
assume that we know that is dimensioned witkime , lat , andion , and that there are three
time values, fivaat values, and telon values.

#include <netcdf.h>
#define TIMES 3

#define LATS 5
#define LONS 10

int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable 1D */

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */
int i;

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

for (i=0; i < TIMES*LATS*LONS; i++)
rh_vals][i] = 0.5;
/* write values into netCDF variable */
status = nc_put_var_double(ncid, rh_id, rh_vals);
if (status '= NC_NOERR) handle_error(status);

7.7 Write an Array of Values: nc_put_vara_ type

The functiomc_put_vara_ type writes values into a netCDF variable of an open netCDF

dataset. The part of the netCDF variable to write is specified by giving a corner and a vector of
edge lengths that refer to an array section of the netCDF variable. The values to be written are
associated with the netCDF variable by assuming that the last dimension of the netCDF variable
varies fastest in the C interface. The netCDF dataset must be in data mode.

Usage

int nc_put_vara_ type (int ncid, int varid, const size_t start][],
const size_t count[], const type*valuesp);

int nc_put_vara_text (int ncid, int varid, const size_t start[],
const size_t count[], const char *tp);

int nc_put_vara_uchar (int ncid, int varid, const size_t start[],
const size_t count[], const unsigned char *up);

int nc_put_vara_schar (int ncid, int varid, const size_t start[],
const size_t count[], const signed char *cp);

int nc_put_vara_short (int ncid, int varid, const size_t start][],
const size_t count[], const short *sp);

int nc_put_vara_int (int ncid, int varid, const size_t start[],
const size_t count[], const int *ip);

int nc_put_vara_long (int ncid, int varid, const size_t start[],
const size_t count[], const long *Ip);

int nc_put_vara_float (int ncid, int varid, const size_t start[],
const size_t count[], const float *fp);

int nc_put_vara_double(int ncid, int varid, const size_t start[],
const size_t count[], const double *dp);

ncid NetCDF ID, from a previous call t@_open or nc_create

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the first
of the data values will be written. The indices are relative to 0, so for exam-
ple, the first data value of a variable would have ingexo, ... , 0) . The

size ofstart must be the same as the number of dimensions of the specified
variable. The elements st must correspond to the variable’s dimen-
sions in order. Hence, if the variable is a record variable, the first index
would correspond to the starting record number for writing the data values.

count A vector of size_tintegers specifying the edge lengths along each dimension
of the block of data values to be written. To write a single value, for exam-
ple, specifycount as(1, 1, ... , 1) . Thelength otount isthe number of
dimensions of the specified variable. The elementswi correspond to
the variable’s dimensions. Hence, if the variable is a record variable, the first
element otount corresponds to a count of the number of records to write.

tp, up, cp, Pointer to a block of data values to be written. The order in which the data
;591 'P,d'P, will be written to the netCDF variable is with the last dimension of the spec-
p, ordp

ified variable varying fastest. If the type of data values differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 20, for details.

Errors

nc_put_vara_ type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

* The specified corner indices were out of range for the rank of the specified variable. For exam-
ple, a negative index, or an index that is larger than the corresponding dimension length will
cause an error.

* The specified edge lengths added to the specified corner would have referenced data out of
range for the rank of the specified variable. For example, an edge length that is larger than the
corresponding dimension length minus the corner index will cause an error.

» One or more of the specified values are out of the range of values representable by the external
data type of the variable.

* The specified netCDF dataset is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_put_vara_double to add or change all the values of the variable
namedh to0.5 in an existing netCDF dataset nanftealnc . For simplicity in this example, we
assume that we know that is dimensioned witkime , lat , andion , and that there are three
time values, fivdat values, and teln values.

#include <netcdf.h>
#define TIMES 3

#define LATS 5
#define LONS 10

int status; [* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable 1D */

static size_t start[] = {0, 0, 0}; /* start at first value */
static size_t count[] = {TIMES, LATS, LONS};
double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

inti;

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

for (i=0; i < TIMES*LATS*LONS; i++)
rh_vals][i] = 0.5;
/* write values into netCDF variable */
status = nc_put_vara_double(ncid, rh_id, start, count, rh_vals);
if (status '= NC_NOERR) handle_error(status);

7.8 Write a Subsampled Array of Valuesnc_put_vars_ type

Each member of the family of functions put_vars_ type writes a subsampled (strided) array
section of values into a netCDF variable of an open netCDF dataset. The subsampled array sec-
tion is specified by giving a corner, a vector of counts, and a stride vector. The netCDF dataset
must be in data mode.

Usage

int nc_put_vars_text (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const char *tp);

int nc_put_vars_uchar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const unsigned char *up);

int nc_put_vars_schar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const signed char *cp);

int nc_put_vars_short (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const short *sp);

int nc_put_vars_int (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const int *ip);

int nc_put_vars_long (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const long *Ip);

int nc_put_vars_float (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const float *fp);

int nc_put_vars_double(int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stride[],
const double *dp);

ncid NetCDF ID, from a previous call t@_open or nc_create

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the first
of the data values will be written. The indices are relative to 0, so for exam-
ple, the first data value of a variable would have ingexo, ... , 0) . The

elements oftart correspond, in order, to the variable’s dimensions. Hence,
if the variable is a record variable, the first index corresponds to the starting
record number for writing the data values.

count A vector of size_t integers specifying the number of indices selected along
each dimension. To write a single value, for example, speoifyt as(1,
1,...,1) . The elements afount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of
count corresponds to a count of the number of records to write.

stride A vector of ptrdiff_t integers that specifies the sampling interval along each
dimension of the netCDF variable. The elements of the stride vector corre-
spond, in order, to the netCDF variable’s dimensions (stride[0] gives the
sampling interval along the most slowly varying dimension of the netCDF
variable). Sampling intervals are specified in type-independent units of ele-
ments (a value of 1 selects consecutive elements of the netCDF variable
along the corresponding dimension, a value of 2 selects every other element,
etc.). ANULL stride argument is treated@si, ... , 1)

tp, up, cp, Pointer to a block of data values to be written. The order in which the data
fSp' 'p’d'P’ will be written to the netCDF variable is with the last dimension of the spec-
p, oradp

ified variable varying fastest. If the type of data values differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 20, for detalils.

Errors

nc_put_vars_ type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

» The specified start, count and stride generate an index which is out of range.

» One or more of the specified values are out of the range of values representable by the external
data type of the variable.

» The specified netCDF is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example of using_put_vars_float to write -- from an internal array -- every other
point of a netCDF variable named which is described by the C declaratioiat rh[4][6]
(note the size of the dimensions):

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; [* error status */
int rhid; [* variable ID */

static size_t startfNDIM] /* netCDF variable start point: */
={0, 0}; /*first element */
static size_t count{NDIM] /* size of internal array: entire */
={2, 3}; /* (subsampled) netCDF variable */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
={2, 2}; [* access every other netCDF element */
float rh[2][3]; /* note subsampled sizes for */
* netCDF variable dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);

status = nc_put_vars_float(ncid, rhid, start, count, stride, rh);
if (status != NC_NOERR) handle_error(status);

7.9 Write a Mapped Array of Values:nc_put_varm_ type

Thenc_put_varm_ type family of functions writes a mapped array section of values into a

netCDF variable of an open netCDF dataset. The mapped array section is specified by giving a
corner, a vector of counts, a stride vector, and an index mapping vector. The index mapping vector
is a vector of integers that specifies the mapping between the dimensions of a netCDF variable
and the in-memory structure of the internal data array. No assumptions are made about the order-
ing or length of the dimensions of the data array. The netCDF dataset must be in data mode.

Usage

int nc_put_varm_text (int ncid, int varid, const size_t start],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const char *tp);

int nc_put_varm_uchar (int ncid, int varid, const size_t start][],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const unsigned char *up);

int nc_put_varm_schar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridef],

const ptrdiff_t imap[], const signed char *cp);

int nc_put_varm_short (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const short *sp);

int nc_put_varm_int (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const int *ip);

int nc_put_varm_long (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const long *Ip);

int nc_put_varm_float (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const float *fp);

int nc_put_varm_double(int ncid, int varid, const size_t start][],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], const double *dp);

ncid NetCDF ID, from a previous call t&_open ornc_create

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the first
of the data values will be written. The indices are relative to 0, so for exam-
ple, the first data value of a variable would have ingexo, ... , 0) . The

elements oftart correspond, in order, to the variable’s dimensions. Hence,
if the variable is a record variable, the first index corresponds to the starting
record number for writing the data values.

count A vector of size_t integers specifying the number of indices selected along
each dimension. To write a single value, for example, speoifyt as(1,
1,...,1) .The elements afount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of
count corresponds to a count of the number of records to write.

stride A vector of ptrdiff_t integers that specifies the sampling interval along each
dimension of the netCDF variable. The elements of the stride vector corre-
spond, in order, to the netCDF variable’s dimensions (stride[0] gives the
sampling interval along the most slowly varying dimension of the netCDF
variable). Sampling intervals are specified in type-independent units of ele-
ments (a value of 1 selects consecutive elements of the netCDF variable
along the corresponding dimension, a value of 2 selects every other element,
etc.). ANULL stride argument is treated@si, ... , 1)

imap A vector of ptrdiff_t integers that specifies the mapping between the dimen-
sions of a netCDF variable and the in-memory structure of the internal data
array. The elements of the index mapping vector correspond, in order, to the
netCDF variable’s dimensions (imap[0] gives the distance between elements
of the internal array corresponding to the most slowly varying dimension of
the netCDF variable). Distances between elements are specified in type-
independent units of elements (the distance between internal elements that
occupy adjacent memory locations is 1 and not the element's byte-length as
in netCDF 2). ANULL argument means the memory-resident values have the
same structure as the associated netCDF variable.

tp, up, cp, Pointer to the location used for computing where the data values will be
fp' 'p'd'P' found; the data should be of the type appropriate for the function called. If
P, or dp

the type of data values differs from the netCDF variable type, type conver-
sion will occur. See Section 3.3 “Type Conversion,” page 20, for details.

Errors

nc_put_varm_ type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

e The variable ID is invalid for the specified netCDF dataset.

* The specifiedtart , count , andstride generate an index which is out of range. Note that no
error checking is possible on tiep vector.

» One or more of the specified values are out of the range of values representable by the external
data type of the variable.

» The specified netCDF is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

The followingimap vector maps in the trivial way a 4x3x2 netCDF variable and an internal array
of the same shape:

float a[4][3][2]; /* same shape as netCDF variable */
int imap[3] = {6, 2, 1};
/* netCDF dimension inter-element distance */
I* */
/* most rapidly varying 1 */
[* intermediate 2 (zimap[2]*2) */
/* most slowly varying 6 (zimap[1]*3) */

Using theimap vector above withic_put_varm_float obtains the same result as simply using
nc_put_var_float

Here is an example of using_put_varm_float to write -- from a transposed, internal array -- a
netCDF variable nameatl which is described by the C declaratitoat rh[6][4] (note the
size and order of the dimensions):

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; [* error status */
int rhid; [* variable ID */

static size_t startfNDIM] /* netCDF variable start point: */
={0, 0}; /*first element */
static size_t count[NDIM] /* size of internal array: entire netCDF */
={6, 4}, [* variable; order corresponds to netCDF */
[* variable -- not internal array */
static ptrdiff_t stride[NDIM]/* variable subsampling intervals: */
={1, 1}; /* sample every netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
={1, 6}; /*would be {4, 1} if not transposing */
float rh[4][6]; /* note transposition of netCDF variable */
/* dimensions */

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status '= NC_NOERR) handle_error(status);

status = nc_put_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status '= NC_NOERR) handle_error(status);

Here is another example of usimg put_varm_float to write -- from a transposed, internal
array -- a subsample of the same netCDF variable, by writing every other point of the netCDF
variable:

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */

static size_t startfNDIM] /* netCDF variable start point: */
={0, 0}; /*first element */
static size_t count[NDIM] /* size of internal array: entire */
={3, 2}; /* (subsampled) netCDF variable; order of */
/* dimensions corresponds to netCDF */
[* variable -- not internal array */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
={2, 2}; [* sample every other netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
={1, 3}, /*would be {2, 1} if not transposing */
float rh[2][3]; /* note transposition of (subsampled) */
/* netCDF variable dimensions */

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status '= NC_NOERR) handle_error(status);

status = nc_put_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status '= NC_NOERR) handle_error(status);

7.10 Read a Single Data Valueac_get varl type

The functionsic_get varl_ type get a single data value from a variable of an open netCDF
dataset that is in data mode. Inputs are the netCDF ID, the variable ID, a multidimensional index
that specifies which value to get, and the address of a location into which the data value will be
read. The value is converted from the external data type of the variable, if necessary.

Usage

int nc_get_varl_text (int ncid, int varid, const size_t index([],
char *tp);

int nc_get_varl_uchar (int ncid, int varid, const size_t index[],
unsigned char *up);

int nc_get_varl_schar (int ncid, int varid, const size_t index]],
signed char *cp);

int nc_get_varl_short (int ncid, int varid, const size_t index[],
short *sp);

int nc_get varl int (int ncid, int varid, const size_t index]],

int *ip);
int nc_get_varl_long (int ncid, int varid, const size_t index([],
long *Ip);
int nc_get_varl_float (int ncid, int varid, const size_t index([],
float *fp);
int nc_get_varl double(int ncid, int varid, const size_t index]],
double *dp);
ncid NetCDF ID, from a previous call i@_open oOrnc_create
varid Variable ID.
index(] The index of the data value to be read. The indices are relative to 0, so for

example, the first data value of a two-dimensional variable would have index
(0,00 . The elements ahdex must correspond to the variable’s dimensions.
Hence, if the variable is a record variable, the first index is the record num-
ber.

tp, up, cp, Pointer to the location into which the data value is read. If the type of data
sp, ip, Ip, value differs from the netCDF variable type, type conversion will occur. See
fp, or, dp Section 3.3 “Type Conversion,” page 20, for details.

Errors

nc_get_varl_ type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

* The specified indices were out of range for the rank of the specified variable. For example, a
negative index or an index that is larger than the corresponding dimension length will cause an
error.

* The value is out of the range of values representable by the desired data type.

» The specified netCDF is in define mode rather than data mode.

* The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_get_varl_double to get thg1,2,3) element of the variable
namedh in an existing netCDF dataset nanednc . For simplicity in this example, we
assume that we know that is dimensioned witlime , lat , andion , SO we want to get the value
of rh that corresponds to the secaing: value, the thirdat value, and the fourtion value:

#include <netcdf.h>

int status; [* error status */

int ncid; /* netCDF ID */

int rh_id; [* variable ID */

static size_t rh_index[] = {1, 2, 3}; /* where to get value from */
double rh_val, /* where to put it */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

status = nc_get_varl_double(ncid, rh_id, rh_index, &rh_val);
if (status != NC_NOERR) handle_error(status);

7.11 Read an Entire Variablenc_get var_ type

The members of thec_get_var_ type family of functions read all the values from a netCDF
variable of an open netCDF dataset. This is the simplest interface to use for reading the value of a
scalar variable or when all the values of a multidimensional variable can be read at once. The val-
ues are read into consecutive locations with the last dimension varying fastest. The netCDF
dataset must be in data mode.

Usage

int nc_get_var_text (intncid, int varid, char *tp);

int nc_get_var_uchar (int ncid, int varid, unsigned char *up);
int nc_get_var_schar (int ncid, int varid, signed char *cp);
int nc_get_var_short (int ncid, int varid, short *sp);

int nc_get_var_int (int ncid, int varid, int *ip);

int nc_get_var_long (int ncid, int varid, long *Ip);

int nc_get_var_float (int ncid, int varid, float *fp);

int nc_get_var_double(int ncid, int varid, double *dp);

ncid NetCDF ID, from a previous call i@_open oOrnc_create

varid Variable ID.

tp, up, cp, Pointer to the location into which the data value is read. If the type of data
fSp' 'p’d'P’ value differs from the netCDF variable type, type conversion will occur. See
p, oradp

Section 3.3 “Type Conversion,” page 20, for detalils.
Errors

nc_get var_ type returns the valusC_NOERRTf no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

» The variable ID is invalid for the specified netCDF dataset.

* One or more of the values are out of the range of values representable by the desired type.
* The specified netCDF is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_get var_double to read all the values of the variable named
from an existing netCDF dataset nanfiednc . For simplicity in this example, we assume that
we know thath is dimensioned witkime , lat , andion , and that there are thréme values,
fivelat values, and tefon values.

#include <netcdf.h>

#define TIMES 3

#define LATS 5

#define LONS 10

int status; /* error status */
int ncid; [* netCDF ID */
int rh_id; /* variable 1D */

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

status = nc_open("foo.nc”, NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

/* read values from netCDF variable */

status = nc_get_var_double(ncid, rh_id, rh_vals);
if (status '= NC_NOERR) handle_error(status);

7.12 Read an Array of Valuesnc_get vara_ type

The members of thec_get_vara_ type family of functions read an array of values from a

netCDF variable of an open netCDF dataset. The array is specified by giving a corner and a vector
of edge lengths. The values are read into consecutive locations with the last dimension varying
fastest. The netCDF dataset must be in data mode.

Usage

int nc_get vara_text (int ncid, int varid, const size_t start[],
const size_t count[] char *tp);

int nc_get vara_uchar (int ncid, int varid, const size_t start][],
const size_t count[] unsigned char *up);

int nc_get vara_schar (int ncid, int varid, const size_t start[],
const size_t count[] signed char *cp);

int nc_get vara_short (int ncid, int varid, const size_t start][],
const size_t count[] short *sp);

int nc_get vara_int (int ncid, int varid, const size_t start[],
const size_t count[] int *ip);

int nc_get vara_long (int ncid, int varid, const size_t start[],
const size_t count[] long *Ip);

int nc_get vara_float (int ncid, int varid, const size_t start[],
const size_t count[] float *fp);

int nc_get_vara_double(int ncid, int varid, const size_t start[],
const size_t count[] double *dp);

ncid NetCDF ID, from a previous call i@_open or nc_create
varid Variable ID.

start

count

tp, up, cp,
sp, ip, Ip,
fp, or, dp

Errors

nc_get_vara_

A vector of size_tintegers specifying the index in the variable where the first
of the data values will be read. The indices are relative to 0, so for example,
the first data value of a variable would have in@eg, ..., 0) . The

length ofstart must be the same as the number of dimensions of the speci-
fied variable. The elements@#ért correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first index would
correspond to the starting record number for reading the data values.

A vector of size_t integers specifying the edge lengths along each dimension
of the block of data values to be read. To read a single value, for example,
specifycount as(1, 1, ..., 1) . The length otount is the number of
dimensions of the specified variable. The element®ait correspond, in
order, to the variable’s dimensions. Hence, if the variable is a record vari-
able, the first element oéunt corresponds to a count of the number of
records to read.

Pointer to the location into which the data value is read. If the type of data
value differs from the netCDF variable type, type conversion will occur. See
Section 3.3 “Type Conversion,” page 20, for details.

type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned

status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

* The specified corner indices were out of range for the rank of the specified variable. For exam-
ple, a negative index or an index that is larger than the corresponding dimension length will
cause an error.

» The specified edge lengths added to the specified corner would have referenced data out of
range for the rank of the specified variable. For example, an edge length that is larger than the
corresponding dimension length minus the corner index will cause an error.

* One or more of the values are out of the range of values representable by the desired type.

* The specified netCDF is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_get_vara_double to read all the values of the variable named
from an existing netCDF dataset nanfiednc . For simplicity in this example, we assume that
we know thath is dimensioned witkime , lat , andlon , and that there are thraee values,
fivelat values, and tern values.

#include <netcdf.h>

#define TIMES 3
#define LATS 5
#define LONS 10

int status; [* error status */

int ncid,; /* netCDF ID */

int rh_id; /* variable 1D */

static size_t start[] = {0, 0, 0}; /* start at first value */

static size_t count[] = {TIMES, LATS, LONS};

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

status = nc_open("foo.nc”, NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

/* read values from netCDF variable */
status = nc_get_vara_double(ncid, rh_id, start, count, rh_vals);
if (status '= NC_NOERR) handle_error(status);

7.13 Read a Subsampled Array of Valuesic_get vars_ type

Thenc_get vars_ type family of functions read a subsampled (strided) array section of values
from a netCDF variable of an open netCDF dataset. The subsampled array section is specified by
giving a corner, a vector of edge lengths, and a stride vector. The values are read with the last
dimension of the netCDF variable varying fastest. The netCDF dataset must be in data mode.

Usage

int nc_get_vars_text (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
char *tp);

int nc_get_vars_uchar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
unsigned char *up);

int nc_get_vars_schar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridef],
signed char *cp);

int nc_get_vars_short (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stridef],
short *sp);

int nc_get_vars_int (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
int *ip);

int nc_get_vars_long (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],

long *Ip);

int nc_get_vars_float (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],

float *fp);

int nc_get_vars_double(int ncid, int varid, const size_t start[],

ncid
varid

start

count

stride

tp, up, cp,
sp, ip, Ip,
fp, or, dp

Errors

nc_get vars_

const size_t count[], const ptrdiff_t stride[],
double *dp)

NetCDF ID, from a previous call t@_open or nc_create
Variable ID.

A vector of size_tintegers specifying the index in the variable where the first
of the data values will be read. The indices are relative to 0, so for example,
the first data value of a variable would have in@eg, ... , 0) . The ele-
ments ofstart correspond, in order, to the variable’s dimensions. Hence, if
the variable is a record variable, the first index corresponds to the starting
record number for reading the data values.

A vector of size_t integers specifying the number of indices selected along
each dimension. To read a single value, for example, speaify as(1,

1,...,1) . The elements afount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of
count corresponds to a count of the number of records to read.

A vector of ptrdiff_t integers specifying, for each dimension, the interval
between selected indices. The elements of the stride vector correspond, in
order, to the variable’s dimensions. A value of 1 accesses adjacent values of
the netCDF variable in the corresponding dimension; a value of 2 accesses
every other value of the netCDF variable in the corresponding dimension;
and so on. ANULL stride argument is treated@si, ..., 1)

Pointer to the location into which the data value is read. If the type of data
value differs from the netCDF variable type, type conversion will occur. See
Section 3.3 “Type Conversion,” page 20, for details.

type returns the valu®C_NOERRT no errors occurred. Otherwise, the returned

status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

» The specified start, count and stride generate an index which is out of range.

* One or more of the values are out of the range of values representable by the desired type.
* The specified netCDF is in define mode rather than data mode.

* The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example that usesget_vars_double to read every other value in each dimension
of the variable namedi from an existing netCDF dataset naniechc . For simplicity in this

example, we assume that we know timais dimensioned witlime , lat , andion , and that there
are threeime values, fiveat values, and telon values.

#include <netcdf.h>
#define TIMES 3

#define LATS 5
#define LONS 10

int status; [* error status */
int ncid; /* netCDF ID */
int rh_id; [* variable 1D */

static size_t start[] ={0, 0, 0}; /* start at first value */

static size_t count[] = {TIMES, LATS, LONS};

static ptrdiff_t stride[] = {2, 2, 2};/* every other value */

double data[TIMES][LATS][LONS]; [* array to hold values */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

/* read subsampled values from netCDF variable into array */

status = nc_get_vars_double(ncid, rh_id, start, count, stride,
&data[0][0][0]);

if (status '= NC_NOERR) handle_error(status);

7.14 Read a Mapped Array of Valuesnc_get varm_ type

Thenc_get varm_ type family of functions reads a mapped array section of values from a
netCDF variable of an open netCDF dataset. The mapped array section is specified by giving a
corner, a vector of edge lengths, a stride vector, and an index mapping vector. The index mapping
vector is a vector of integers that specifies the mapping between the dimensions of a netCDF vari-
able and the in-memory structure of the internal data array. No assumptions are made about the
ordering or length of the dimensions of the data array. The netCDF dataset must be in data mode.

Usage

int nc_get varm_text (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], char *tp);

int nc_get_varm_uchar (int ncid, int varid, const size_t start][],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], unsigned char *up);

int nc_get_varm_schar (int ncid, int varid, const size_t start[],
const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], signed char *cp);

int nc_get_varm_short (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], short *sp);

int nc_get_varm_int (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], int *ip);

int nc_get_varm_long (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], long *Ip);

int nc_get_varm_float (int ncid, int varid, const size_t start[],

const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], float *fp);

int nc_get_varm_double(int ncid, int varid, const size_t start]],

ncid
varid

start

count

stride

const size_t count[], const ptrdiff_t stride[],
const ptrdiff_t imap[], double *dp);

NetCDF ID, from a previous call t@_open or nc_create
Variable ID.

A vector of size_t integers specifying the index in the variable where the first
of the data values will be read. The indices are relative to 0, so for example,
the first data value of a variable would have in@eg, ... , 0) . The ele-
ments ofstart correspond, in order, to the variable’s dimensions. Hence, if
the variable is a record variable, the first index corresponds to the starting
record number for reading the data values.

A vector of size_t integers specifying the number of indices selected along
each dimension. To read a single value, for example, speaify as(1,

1,...,1) . The elements afount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element of
count corresponds to a count of the number of records to read.

A vector of ptrdiff_t integers specifying, for each dimension, the interval
between selected indices. The elements of the stride vector correspond, in
order, to the variable’s dimensions. A value of 1 accesses adjacent values of
the netCDF variable in the corresponding dimension; a value of 2 accesses
every other value of the netCDF variable in the corresponding dimension;
and so on. ANULL stride argument is treated@si, ..., 1)

imap A vector of integers that specifies the mapping between the dimensions of a
netCDF variable and the in-memory structure of the internal data array.
imap[0] gives the distance between elements of the internal array corre-
sponding to the most slowly varying dimension of the netCDF variable.
imap[n-1] (where n is the rank of the netCDF variable) gives the distance
between elements of the internal array corresponding to the most rapidly
varying dimension of the netCDF variable. Intervening imap elements corre-
spond to other dimensions of the netCDF variable in the obvious way. Dis-
tances between elements are specified in type-independent units of elements
(the distance between internal elements that occupy adjacent memory loca-
tions is 1 and not the element's byte-length as in netCDF 2).

tp, up, cp, Pointer to the location used for computing where the data values are read;
fSp' P, ('jP’ the data should be of the type appropriate for the function called. If the type
p, or, ap

of data value differs from the netCDF variable type, type conversion will
occur. See Section 3.3 “Type Conversion,” page 20, for details.

Errors

nc_get_varm_ type returns the valu®C_NOERRTf no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

* The specifiedtart , count , andstride generate an index which is out of range. Note that no
error checking is possible on tiep vector.

* One or more of the values are out of the range of values representable by the desired type.

» The specified netCDF is in define mode rather than data mode.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

The followingimap vector maps in the trivial way a 4x3x2 netCDF variable and an internal array
of the same shape:

float a[4][3][2]; /* same shape as netCDF variable */
size_timap[3] ={6, 2, 1};
/* netCDF dimension inter-element distance */
I* */
/* most rapidly varying 1 */
[* intermediate 2 (zimap[2]*2) */
/* most slowly varying 6 (zimap[1]*3) */

Using theimap vector above witlic_get_varm_float obtains the same result as simply using
nc_get_var_float

Here is an example of using_get_varm_float to transpose a netCDF variable named
which is described by the C declaratitat rh[6][4] (note the size and order of the dimen-
sions):

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */

static size_t start{NDIM] /* netCDF variable start point: */
={0, 0}; /*first element */
static size_t count[NDIM] /* size of internal array: entire netCDF */
={6, 4}; [* variable; order corresponds to netCDF */
[* variable -- not internal array */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
={1, 1}, /*sample every netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
={1, 6}; /*would be {4, 1} if not transposing */
float rh[4][6]; /* note transposition of netCDF variable */
/* dimensions */

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);
if (status '= NC_NOERR) handle_error(status);

status = nc_get_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status '= NC_NOERR) handle_error(status);

Here is another example of usiing get_varm_float to simultaneously transpose and subsam-
ple the same netCDF variable, by accessing every other point of the netCDF variable:

#include <netcdf.h>

#define NDIM 2 /* rank of netCDF variable */

int ncid; /* netCDF ID */
int status; [* error status */
int rhid; [* variable ID */

static size_t startfNDIM] /* netCDF variable start point: */
={0, 0}; /*first element */
static size_t count[NDIM] /* size of internal array: entire */
={3, 2}; I* (subsampled) netCDF variable; order of */
/* dimensions corresponds to netCDF */
[* variable -- not internal array */
static ptrdiff_t stride[NDIM]/* variable subsampling intervals: */
={2, 2}; I* sample every other netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
={1, 3}; /*would be {2, 1} if not transposing */
float rh[2][3]; [* note transposition of (subsampled) */
[* netCDF variable dimensions */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid(ncid, "rh", &rhid);

if (status '= NC_NOERR) handle_error(status);

status = nc_get_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status '= NC_NOERR) handle_error(status);

7.15 Reading and Writing Character String Values

Character strings are not a primitive netCDF external data type, in part because FORTRAN does
not support the abstraction of variable-length character strings (the FORIENnction

returns the static length of a character string, not its dynamic length). As a result, a character
string cannot be written or read as a single object in the netCDF interface. Instead, a character
string must be treated as an array of characters, and array access must be used to read and write
character strings as variable data in netCDF datasets. Furthermore, variable-length strings are not
supported by the netCDF interface except by convention; for example, you may treat a zero byte
as terminating a character string, but you must explicitly specify the length of strings to be read
from and written to netCDF variables.

Character strings as attribute values are easier to use, since the strings are treated as a single unit
for access. However, the value of a character-string attribute is still an array of characters with an
explicit length that must be specified when the attribute is defined.

When you define a variable that will have character-string values, dsaracter-position dimen-
sionas the most quickly varying dimension for the variable (the last dimension for the variable in
C). The length of the character-position dimension will be the maximum string length of any
value to be stored in the character-string variable. Space for maximume-length strings will be allo-
cated in the disk representation of character-string variables whether you use the space or not. If
two or more variables have the same maximum length, the same character-position dimension
may be used in defining the variable shapes.

To write a character-string value into a character-string variable, use either entire variable access
or array access. The latter requires that you specify both a corner and a vector of edge lengths.
The character-position dimension at the corner should be zero for C. If the length of the string to
be written isn, then the vector of edge lengths will speaifyn the character-position dimension,

and one for all the other dimensiaasi, ..., 1, n).

In C, fixed-length strings may be written to a netCDF dataset without the terminating zero byte, to
save space. Variable-length strings should be wntidna terminating zero byte so that the
intended length of the string can be determined when it is later read.

Here is an example that defines a record variabldpr character strings and stores a character-
string value into the third record usimg_put_vara_text . In this example, we assume the string
variable and data are to be added to an existing netCDF dataset fimmed that already has an
unlimited record dimensiotime .

#include <netcdf.h>

int ncid; /* netCDF ID */

int chid; /* dimension ID for char positions */
int timeid; /* dimension ID for record dimension */
int tx_id; [* variable 1D */
#define TDIMS 2 /* rank of tx variable */
int tx_dims[TDIMS]; /* variable shape */
size_t tx_start[TDIMS];
size_t tx_count[TDIMS];
static char tx_val[] =
"example string"; /* string to be put */

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);
status = nc_redef(ncid); [* enter define mode */
if (status '= NC_NOERR) handle_error(status);

/* define character-position dimension for strings of max length 40 */
status = nc_def_dim(ncid, "chid", 40L, &chid);
if (status '= NC_NOERR) handle_error(status);

/* define a character-string variable */

tx_dims[0] = timeid;

tx_dims[1] = chid; /* character-position dimension last */

status = nc_def _var (ncid, "tx", NC_CHAR, TDIMS, tx_dims, &tx_id);
if (status '= NC_NOERR) handle_error(status);

status = nc_enddef(ncid); /* leave define mode */
if (status '= NC_NOERR) handle_error(status);

/* write tx_val into tx netCDF variable in record 3 */

tx_start[0] =3; /* record number to write */

tx_start[1] =0; /* start at beginning of variable */

tx_count[0] =1; /* only write one record */

tx_count[1] = strlen(tx_val) + 1; /* number of chars to write */
status = nc_put_vara_text(ncid, tx_id, tx_start, tx_count, tx_val);
if (status '= NC_NOERR) handle_error(status);

7.16 Fill Values

What happens when you try to read a value that was never written in an open netCDF dataset?
You might expect that this should always be an error, and that you should get an error message or
an error status returned. Ydo get an error if you try to read data from a netCDF dataset that is
not open for reading, if the variable 1D is invalid for the specified netCDF dataset, or if the speci-
fied indices are not properly within the range defined by the dimension lengths of the specified
variable. Otherwise, reading a value that was not written returns a dplecélie used to fill in

any undefined values when a netCDF variable is first written.

You may ignore fill values and use the entire range of a netCDF external data type, but in this case
you should make sure you write all data values before reading them. If you know you will be writ-
ing all the data before reading it, you can specify that no prefilling of variables with fill values will

occur by callinghc_set_fill before writing. This may provide a significant performance gain for
netCDF writes.

The variable attributeFillvalue ~ may be used to specify the fill value for a variable. Their are
default fill values for each type, defined in the includentitedf.n: NC_FILL_CHAR
NC_FILL_BYTE, NC_FILL_SHORT, NC_FILL_INT , NC_FILL_FLOAT, andNC_FILL_DOUBLE

The netCDF byte and character types have different default fill values. The default fill value for
characters is the zero byte, a useful value for detecting the end of variable-length C character
strings. If you need a fill value for a byte variable, it is recommended that you explicitly define an
appropriate Fillvalue attribute, as generic utilities such@asiump will not assume a default fill
value for byte variables.

Type conversion for fill values is identical to type conversion for other values: attempting to con-
vert a value from one type to another type that can't represent the value results in a range error.
Such errors may occur on writing or reading values from a larger type (such as double) to a

smaller type (such as float), if the fill value for the larger type cannot be represented in the smaller

type.

7.17 Rename a Variablenc_rename_var

The functionnc_rename_var changes the name of a netCDF variable in an open netCDF dataset.
If the new name is longer than the old name, the netCDF dataset must be in define mode. You can-
not rename a variable to have the name of any existing variable.

Usage

int nc_rename_var(int ncid, int varid, const char* name);

ncid NetCDF ID, from a previous call t@_open or nc_create
varid Variable ID.
name New name for the specified variable.

Errors

nc_rename_var returns the valueiC_NOERRTf no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* The new name is in use as the name of another variable.
* The variable ID is invalid for the specified netCDF dataset.
» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_rename_var to rename the variable torel_hum in an existing
netCDF dataset nameésgb.nc

#include <netcdf.h>

int status; /* error status */

int ncid; [* netCDF ID */
int rh_id; [* variable 1D */

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* put in define mode to rename variable */
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

if (status '= NC_NOERR) handle_error(status);

status = nc_rename_var (ncid, rh_id, "rel_hum");

if (status '= NC_NOERR) handle_error(status);

status = nc_enddef(ncid); /* leave define mode */

if (status '= NC_NOERR) handle_error(status);

8 Attributes

Attributes may be associated with each netCDF variable to specify such properties as units, spe-
cial values, maximum and minimum valid values, scaling factors, and offsets. Attributes for a
netCDF dataset are defined when the dataset is first created, while the netCDF dataset is in define
mode. Additional attributes may be added later by reentering define mode. A netCDF attribute has
a netCDF variable to which it is assigned, a name, a type, a length, and a sequence of one or more
values. An attribute is designated by its variable ID and name. When an attribute name is not
known, it may be designated by its variable ID and number in order to determine its name, using
the functionnc_ing_attname

The attributes associated with a variable are typically defined immediately after the variable is
created, while still in define mode. The data type, length, and value of an attribute may be changed
even when in data mode, as long as the changed attribute requires no more space than the attribute
as originally defined.

It is also possible to have attributes that are not associated with any variable. These agl@alled

bal attributesand are identified by usingC_GLOBAIas a variable pseudo-ID. Global attributes are
usually related to the netCDF dataset as a whole and may be used for purposes such as providing
a title or processing history for a netCDF dataset.

Operations supported on attributes are:

» Create an attribute, given its variable ID, name, data type, length, and value.
» Get attribute’s data type and length from its variable ID and name.

» Get attribute’s value from its variable ID and name.

» Copy attribute from one netCDF variable to another.

» Get name of attribute from its number.

* Rename an attribute.

» Delete an attribute.

8.1 Attribute Conventions

Names commencing with underscoré€)(are reserved for use by the netCDF library. Most

generic applications that process netCDF datasets assume standard attribute conventions and it is
strongly recommended that these be followed unless there are good reasons for not doing so.
Below we list the names and meanings of recommended standard attributes that have proven use-
ful. Note that some of these (eunits , valid_range , scale_factor) assume numeric data and

should not be used with character data.

units

long_name

valid_min
valid_max

valid_range

scale_factor

A character string that specifies the units used for the variable’s data. Uni-
data has developed a freely-available library of routines to convert
between character string and binary forms of unit specifications and to per-
form various useful operations on the binary forms. This library is used in
some netCDF applications. Using the recommended units syntax permits
data represented in conformable units to be automatically converted to
common units for arithmetic operations. See Appendix A “Units,”

page 149, for more information.

A long descriptive name. This could be used for labeling plots, for exam-
ple. If a variable has neng_name attribute assigned, the variable name
should be used as a default.

A scalar specifying the minimum valid value for this variable.
A scalar specifying the maximum valid value for this variable.

A vector of two numbers specifying the minimum and maximum valid val-
ues for this variable, equivalent to specifying values for taid min
andvalid_max attributes. Any of these attributes define\thed range

The attributevalid range must not be defined if eitheslid_ min or
valid_max is defined.

Generic applications should treat values outsidedlid rangeas miss-
ing. The type of eaclulid_range ,valid_min andvalid_max attribute
should match the type of its variable (except thabjar data, these can
be of a signed integral type to specify the intended range).

If neithervalid_min , valid_max norvalid_range is defined then

generic applications should define a valid range as follows. If the data type
is byte and Fillvalue is not explicitly defined, then the valid range
should include all possible values. Otherwise, the valid range should
exclude the Fillvalue (whether defined explicitly or by default) as fol-
lows. If the_Fillvalue is positive then it defines a valid maximum, other-
wise it defines a valid minimum. For integer types, there should be a
difference of 1 between th&illvalue and this valid minimum or maxi-
mum. For floating point types, the difference should be twice the mini-
mum possible (1 in the least significant bit) to allow for rounding error.

If present for a variable, the data are to be multiplied by this factor after the
data are read by the application that accesses the data.

add_offset

_Fillvalue

missing_value

signedness

If present for a variable, this number is to be added to the data after it is
read by the application that accesses the data. Ifsbaithfactor and
add_offset attributes are present, the data are first scaled before the offset
is added. The attributesale_factor andadd_offset can be used

together to provide simple data compression to store low-resolution float-
ing-point data as small integers in a netCDF dataset. When scaled data are
written, the application should first subtract the offset and then divide by
the scale factor.

Whenscale_factor ~ andadd_offset are used for packing, the associ-
ated variable (containing the packed data) is typically of type byte or short,
whereas the unpacked values are intended to be of type float or double.
The attributescale_factor andadd_offset should both be of the type
intended for the unpacked data, e.qg. float or double.

The_Fillvalue attribute specifies thil value used to pre-fill disk space
allocated to the variable. Such pre-fill occurs unfexdgl modeis set
usingnc_set _fill . See Section 5.12 “Set Fill Mode for Writes:
nc_set_fill NF_SET_FILL ,’ page 46, for details. THél valueis
returned when reading values that were never writteffillvalue is
defined then it should be scalar and of the same type as the variable. It is
not necessary to define your owrillvValue attribute for a variable if

the defaulfill value for the type of the variable is adequate. However, use
of the default fill value for data type byte is not recommended. Note that if
you change the value of this attribute, the changed value applies only to
subsequent writes; previously written data are not changed.

Generic applications often need to write a value to represent undefined or
missing values. Thill value provides an appropriate value for this pur-
pose because it is normally outside tlaid rangeand therefore treated as
missing when read by generic applications. It is legal (but not recom-
mended) for théll value to be within thevalid range

See Section 7.16 “Fill Values,” page 106, for more information.

This attribute is not treated in any special way by the library or conforming
generic applications, but is often useful documentation and may be used
by specific applications. Theissing_value attribute can be a scalar or
vector containing values indicating missing data. These values should all
be outside thealid rangeso that generic applications will treat them as
missing.

Deprecated attribute, originally designed to indicate whether byte values
should be treated as signed or unsigned. The attritaligsnin and
valid_max may be used for this purpose. For example, if you intend that a
byte variable store only nonnegative values, you canalisemin = 0
andvalid_max =255 . This attribute is ignored by the netCDF library.

C_format

title

history

Conventions

A character array providing the format that should be used by C applica-
tions to print values for this variable. For example, if you know a variable
Is only accurate to three significant digits, it would be appropriate to define
theC_format attribute as$%.3g" . Thencdump utility program uses this
attribute for variables for which it is defined. The format applies to the
scaled (internal) type and value, regardless of the presence of the scaling
attributesscale_factor andadd_offset

A global attribute that is a character array providing a succinct description
of what is in the dataset.

A global attribute for an audit trail. This is a character array with a line for
each invocation of a program that has modified the dataset. Well-behaved
generic netCDF applications should append a line containing: date, time of
day, user name, program name and command arguments.

If present, Conventions '’ is a global attribute that is a character array for
the name of the conventions followed by the dataset, in the form of a string
that is interpreted as a directory name relative to a directory that is a repos-
itory of documents describing sets of discipline-specific conventions. This
permits a hierarchical structure for conventions and provides a place where
descriptions and examples of the conventions may be maintained by the
defining institutions and groups. The conventions directory name is cur-
rently interpreted relative to the directqmyb/netcdf/Conventions/ on

the host machingp.unidata.ucar.edu . Alternatively, a full URL spec-
ification may be used to name a WWW site where documents that describe
the conventions are maintained.

For example, if a group named NUWG agrees upon a set of conventions
for dimension names, variable names, required attributes, and netCDF rep-
resentations for certain discipline-specific data structures, they may store a
document describing the agreed-upon conventions in a dataset in the
NUWG/subdirectory of the Conventions directory. Datasets that followed
these conventions would contain a globalventions attribute with
value"NUWG!

Later, if the group agrees upon some additional conventions for a specific
subset of NUWG data, for example time series data, the description of the
additional conventions might be stored in thevG/Time_series/ subdi-
rectory, and datasets that adhered to these additional conventions would
use the globatonventions attribute with valueNUWG/Time_series"
implying that this dataset adheres to the NUWG conventions and also to
the additional NUWG time-series conventions.

8.2 Create an Attribute: nc_put_att type

The functionnc_put_att_ type adds or changes a variable attribute or global attribute of an open
netCDF dataset. If this attribute is new, or if the space required to store the attribute is greater than
before, the netCDF dataset must be in define mode.

Usage

Although it's possible to create attributes of all types, text and double attributes are adequate for
most purposes.

int nc_put_att_text (int ncid, int varid, const char *name,
size_t len, const char *tp);

int nc_put_att_uchar (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const unsigned char *up);

int nc_put_att_schar (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const signed char *cp);

int nc_put_att_short (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const short *sp);

int nc_put_att_int (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const int *ip);

int nc_put_att_long (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const long *Ip);

int nc_put_att_float (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const float *fp);

int nc_put_att_double (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const double *dp);

ncid NetCDF ID, from a previous call i@_open or nc_create

varid Variable ID of the variable to which the attribute will be assigned or
NC_GLOBAIfor a global attribute.

name Attribute name. Must begin with an alphabetic character, followed by zero
or more alphanumeric characters including the underscdyease is sig-
nificant. Attribute name conventions are assumed by some netCDF generic
applications, e.gunits as the name for a string attribute that gives the units
for a netCDF variable. See Section 8.1 “Attribute Conventions,” page 109,
for examples of attribute conventions.

xtype One of the set of predefined netCDF external data types. The type of this
parametemc_type , is defined in the netCDF header file. The valid netCDF
external data types ak&_BYTE NC_CHARNC_SHORTNC_INT, NC_FLOAT
andNC_DOUBLEAIthough it’s possible to create attributes of all types,
NC_CHARandNC_DOUBLRttributes are adequate for most purposes.

len Number of values provided for the attribute.

tp, up, cp, Pointer to one or more values. If the type of values differs from the netCDF
fp' 'p'd'P' attribute type specified ag/pe , type conversion will occur. See Section 3.3

P, or dp

“Type Conversion,” page 20, for details.

Errors

nc_put_att typereturns the valusC_NOERRTf no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

The variable ID is invalid for the specified netCDF dataset.

The specified netCDF type is invalid.

The specified length is negative.

The specified open netCDF dataset is in data mode and the specified attribute would expand.
The specified open netCDF dataset is in data mode and the specified attribute does not already
exist.

The specified netCDF ID does not refer to an open netCDF dataset.

The number of attributes for this variable exceedsMAX_ATTRS

Example

Here is an example usimg_put_att_double to add a variable attribute nametid_range
for a netCDF variable namen and a global attribute naméde to an existing netCDF dataset
namedoo.nc

#include <netcdf.h>

int status; /* error status */

int ncid; [* netCDF ID */
int rh_id; /* variable 1D */

static double rh_range[] = {0.0, 100.0};/* attribute vals */
static char title[] = "example netCDF dataset";

status = nc_open(“foo.nc”, NC_WRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_redef(ncid); /* enter define mode */
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);

if (status '= NC_NOERR) handle_error(status);

status = nc_put_att_double (ncid, rh_id, "valid_range”,
NC_DOUBLE, 2, rh_range);

if (status '= NC_NOERR) handle_error(status);

status = nc_put_att_text (ncid, NC_GLOBAL, "title",
NC_CHAR, strlen(title), title)

if (status '= NC_NOERR) handle_error(status);

status = nc_enddef(ncid); /* leave define mode */
if (status '= NC_NOERR) handle_error(status);

8.3 Get Information about an Attribute: nc_inq_att Family

This family of functions returns information about a netCDF attribute. All but one of these func-
tions require the variable ID and attribute name; the exceptiorng attname . Information

about an attribute includes its type, length, name, and number. See gee att family for get-

ting attribute values.

The functiomc_ing_attname gets the name of an attribute, given its variable ID and number.
This function is useful in generic applications that need to get the names of all the attributes asso-
ciated with a variable, since attributes are accessed by name rather than number in all other
attribute functions. The number of an attribute is more volatile than the name, since it can change
when other attributes of the same variable are deleted. This is why an attribute number is not
called an attribute ID.

The functiomc_ing_att returns the attribute’s type and length. The other functions each return
just one item of information about an attribute.

Usage

int nc_ing_att (int ncid, int varid, const char *name,
nc_type *xtypep, size_t *lenp);

int nc_ing_atttype(int ncid, int varid, const char *name,
nc_type *xtypep);

int nc_ing_attlen (int ncid, int varid, const char *name, size_t *lenp);
int nc_ing_attname(int ncid, int varid, int attnum, char *name);

int nc_ing_attid (int ncid, int varid, const char *name, int *atthump);

ncid NetCDF ID, from a previous call t@_open or nc_create
varid Variable ID of the attribute’s variable, 8C_GLOBAILfor a global attribute.
name Attribute name. Fonc_ing_attname , this is a pointer to the location for the

returned attribute name.

xtypep

lenp

attnum

attnump

Errors

Pointer to location for returned attribute type, one of the set of predefined
netCDF external data types. The type of this paramedetype , is defined

in the netCDF header file. The valid netCDF external data types are
NC_BYTE NC_CHARNC_SHORTNC_INT, NC_FLOAT andNC_DOUBLEIf this
parameter is given as” (a null pointer), no type will be returned so no vari-
able to hold the type needs to be declared.

Pointer to location for returned number of values currently stored in the
attribute. For attributes of typec_CHARyou should not assume that this
includes a trailing zero byte; it doesn't if the attribute was stored without a
trailing zero byte, for example from a FORTRAN program. Before using the
value & a C string, make sure it is null-terminated. If this parameter is given
as 0’ (a null pointer), no length will be returned so no variable to hold this
information needs to be declared.

Fornc_ing_attname , attribute number. The attributes for each variable are
numbered from O (the first attribute) tatts-1 , wherenatts is the number
of attributes for the variable, as returned from a caltting_varnatts

Fornc_ing_attid , pointer to location for returned attribute number that
specifies which attribute this is for this variable (or which global attribute). If
you already know the attribute name, knowing its number is not very useful,
because accessing information about an attribute requires its name.

Each function returns the valieNOERRTf no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

» The variable ID is invalid for the specified netCDF dataset.

» The specified attribute does not exist.

» The specified netCDF ID does not refer to an open netCDF dataset.

* Fornc_ing_attname , the specified attribute number is negative or more than the number of
attributes defined for the specified variable.

Example

Here is an example using_ing_att to find out the type and length of a variable attribute named
valid_range for a netCDF variable nameid and a global attribute namegk in an existing
netCDF dataset nameésgb.nc

#include <netcdf.h>

int status;
int ncid;
int rh_id;

[* error status */
/* netCDF ID */
[* variable ID */

nc_type vr_type, t_type; /* attribute types */

int vr_len, t_len;

[* attribute lengths */

status = nc_open("foo.nc”, NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_att (ncid, rh_id, "valid_range", &vr_type, &vr_len);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_att (ncid, NC_GLOBAL, "title", &t_type, &t_len);
if (status '= NC_NOERR) handle_error(status);

8.4 Get Attribute’s Values:nc_get_att type

Members of thec_get att_ type family of functions get the value(s) of a netCDF attribute,
given its variable ID and name.

Usage

int nc_get_att_text (int ncid, int varid, const char *name,
char *tp);

int nc_get_att_uchar (int ncid, int varid, const char *name,
unsigned char *up);

int nc_get_att_schar (int ncid, int varid, const char *name,
signed char *cp);

int nc_get_att_short (int ncid, int varid, const char *name,

short *sp);
int nc_get_att_int (int ncid, int varid, const char *name,
int *ip);
int nc_get_att_long (int ncid, int varid, const char *name,
long *Ip);
int nc_get_att_float (int ncid, int varid, const char *name,
float *fp);
int nc_get_att_double (int ncid, int varid, const char *name,
double *dp);
ncid NetCDF ID, from a previous call i@_open or nc_create
varid Variable 1D of the attribute’s variable, NC_GLOBALlfor a global attribute.

name Attribute name.

tp, up, cp, Pointer to location for returned attribute value(s). All elements of the vector
sp, ip, Ip, of attribute values are returned, so you must allocate enough space to hold
fp, or dp them. For attributes of type NC_CHAR, you should not assume that the
returned values include a trailing zero byte; they won't if the attribute was
stored without a trailing zero byte, for example from a FORTRAN program.
Before using the value as a C string, make sure it is null-terminated. If you
don’t know how much space to reserve, ¢alling_attlen first to find out
the length of the attribute.

Errors

nc_get_att type returns the valusC_NOERRTf no errors occurred. Otherwise, the returned sta-
tus indicates an error. Possible causes of errors include:

* The variable ID is invalid for the specified netCDF dataset.

» The specified attribute does not exist.

» The specified netCDF ID does not refer to an open netCDF dataset.

» One or more of the attribute values are out of the range of values representable by the desired

type.
Example

Here is an example usimg_get_att_double to determine the values of a variable attribute
namedvalid_range for a netCDF variable named and a global attribute namegt in an

existing netCDF dataset namied.nc . In this example, it is assumed that we don’t know how
many values will be returned, but that we do know the types of the attributes. Hence, to allocate
enough space to store them, we must first inquire about the length of the attributes.

#include <netcdf.h>

int status; [* error status */

int ncid; /* netCDF ID */

int rh_id; [* variable ID */

int vr_len, t_len; /* attribute lengths */
double *vr_val; [* ptr to attribute values */
char *title; [* ptr to attribute values */

extern char *malloc(); /* memory allocator */

status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

/* find out how much space is needed for attribute values */
status = nc_ing_attlen (ncid, rh_id, "valid_range", &vr_len);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_attlen (ncid, NC_GLOBAL, "title", &t_len);

if (status '= NC_NOERR) handle_error(status);

/* allocate required space before retrieving values */
vr_val = (double *) malloc(vr_len * sizeof(double));
title = (char *) malloc(t_len + 1); /* + 1 for trailing null */

[* get attribute values */

status = nc_get_att_double(ncid, rh_id, "valid_range", vr_val);
if (status '= NC_NOERR) handle_error(status);

status = nc_get_att_text(ncid, NC_GLOBAL, "title", title);

if (status '= NC_NOERR) handle_error(status);

title[t_len] = "\0'; /* null terminate */

8.5 Copy Attribute from One NetCDF to Another: nc_copy_att

The functiomnc_copy_att copies an attribute from one open netCDF dataset to another. It can
also be used to copy an attribute from one variable to another within the same netCDF.

Usage

int nc_copy_att (int ncid_in, int varid_in, const char *name,
int ncid_out, int varid_out);

ncid_in The netCDF ID of an input netCDF dataset from which the attribute will be
copied, from a previous call t@_open ornc_create

varid_in ID of the variable in the input netCDF dataset from which the attribute will
be copied, oNC_GLOBAIfor a global attribute.

name Name of the attribute in the input netCDF dataset to be copied.

ncid_out The netCDF ID of the output netCDF dataset to which the attribute will be

copied, from a previous call te_open ornc_create . Itis permissible for

the input and output netCDF IDs to be the same. The output netCDF dataset
should be in define mode if the attribute to be copied does not already exist
for the target variable, or if it would cause an existing target attribute to
grow.

varid_out ID of the variable in the output netCDF dataset to which the attribute will be
copied, oINC_GLOBALtO copy to a global attribute.

Errors

nc_copy_att returns the valueC_NOERRT no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

* The input or output variable ID is invalid for the specified netCDF dataset.
» The specified attribute does not exist.

» The output netCDF is not in define mode and the attribute is new for the output dataset is
larger than the existing attribute.
* The input or output netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_copy_att to copy the variable attributaits from the variablenh

in an existing netCDF dataset nametnc to the variablevgrh in another existing netCDF
dataset nameihr.nc , assuming that the variakdegrh already exists, but does not yet have a
units attribute:

#include <netcdf.h>

int status; [* error status */
int ncidl, ncid2; /* netCDF IDs */
int rh_id, avgrh_id; /* variable IDs */

status = nc_open("foo.nc", NC_NOWRITE, ncidl);
if (status '= NC_NOERR) handle_error(status);
status = nc_open("bar.nc", NC_WRITE, ncid2);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid1, "rh", &rh_id);

if (status '= NC_NOERR) handle_error(status);
status = nc_ing_varid (ncid2, "avgrh", &avgrh_id);
if (status '= NC_NOERR) handle_error(status);

status = nc_redef(ncid2); /* enter define mode */

if (status '= NC_NOERR) handle_error(status);

[* copy variable attribute from "rh" to "avgrh" */

status = nc_copy_att(ncidl, rh_id, "units", ncid2, avgrh_id);
if (status '= NC_NOERR) handle_error(status);

status = nc_enddef(ncid2); /* leave define mode */
if (status '= NC_NOERR) handle_error(status);

8.6 Rename an Attribute:nc_rename_att

The functionnc_rename_att changes the name of an attribute. If the new name is longer than the
original name, the netCDF dataset must be in define mode. You cannot rename an attribute to have
the same name as another attribute of the same variable.

Usage

int nc_rename_att (int ncid, int varid, const char* name,
const char* newname);

ncid NetCDF ID, from a previous call i@_open or nc_create

varid ID of the attribute’s variable, &%C_GLOBAIfor a global attribute
name The current attribute name.

newname The new name to be assigned to the specified attribute. If the new name is
longer than the current name, the netCDF dataset must be in define mode.

Errors

nc_rename_att returns the valueiC_NOERRTf no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

» The specified variable ID is not valid.

* The new attribute name is already in use for another attribute of the specified variable.

» The specified netCDF dataset is in data mode and the new name is longer than the old name.
» The specified attribute does not exist.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usimg_rename_att to rename the variable attributéits to Units for a
variablerh in an existing netCDF dataset nani&tinc

#include <netcdf.h>
int status; [* error status */
int ncid; /* netCDF ID */

int rh_id; [* variable id */

status = nc_open("foo.nc”, NC_NOWRITE, &ncid);
if (status '= NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status '= NC_NOERR) handle_error(status);

/* rename attribute */
status = nc_rename_att(ncid, rh_id, "units”, "Units");
if (status '= NC_NOERR) handle_error(status);

8.7 Delete an Attribute:nc_del_att

The functiomnc_del_att deletes a netCDF attribute from an open netCDF dataset. The netCDF
dataset must be in define mode.

Usage

int nc_del_att (int ncid, int varid, const char* name);

ncid NetCDF ID, from a previous call t@_open or nc_create

varid ID of the attribute’s variable, &C_GLOBAIfor a global attribute.
name The name of the attribute to be deleted.
Errors

nc_del_att returns the valuBC_NOERRTf no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

» The specified variable 1D is not valid.

* The specified netCDF dataset is in data mode.

» The specified attribute does not exist.

» The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example using_del_att to delete the variable attributanits for a variableh in an
existing netCDF dataset namied.nc

#include <netcdf.h>

int status; [* error status */
int ncid; /* netCDF ID */
int rh_id; [* variable ID */

status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);

status = nc_ing_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

[* delete attribute */

status = nc_redef(ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);
status = nc_del_att(ncid, rh_id, "Units");

if (status != NC_NOERR) handle_error(status);
status = nc_enddef(ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

O NetCDF File Structure and Performance

This chapter describes the file structure of a netCDF dataset in enough detail to aid in understand-
ing netCDF performance issues.

NetCDF is a data abstraction for array-oriented data access and a software library that provides a
concrete implementation of the interfaces that support that abstraction. The implementation pro-
vides a machine-independent format for representing arrays. Although the netCDF file format is
hidden below the interfaces, some understanding of the current implementation and associated file
structure may help to make clear why some netCDF operations are more expensive than others.

For a detailed description of the netCDF format, see Appendix B “File Format Specification,”

page 151. Knowledge of the format is not needed for reading and writing netCDF data or under-
standing most efficiency issues. Programs that use only the documented interfaces and that make
no assumptions about the format will continue to work even if the netCDF format is changed in
the future, because any such change will be made below the documented interfaces and will sup-
port earlier versions of the netCDF file format.

9.1 Parts of a NetCDF File
A netCDF dataset is stored as a single file comprising two parts:

» aheader containing all the information about dimensions, attributes, and variables except for
the variable data;

» adatapart, comprisindixed-size datacontaining the data for variables that don’t have an
unlimited dimension; andariable-size datacontaining the data for variables that have an
unlimited dimension.

Both the header and data parts are represented in a machine-independent form. This form is very
similar to XDR (eXternal Data Representation), extended to support efficient storage of arrays of
non-byte data.

The header at the beginning of the file contains information about the dimensions, variables, and
attributes in the file, including their names, types, and other characteristics. The information about
each variable includes the offset to the beginning of the variable’s data for fixed-size variables or
the relative offset of other variables within a record. The header also contains dimension lengths
and information needed to map multidimensional indices for each variable to the appropriate off-
sets.

This header has no usable extra space; itis only as large as it needs to be for the dimensions, vari-
ables, and attributes (including all the attribute values) in the netCDF dataset. This has the advan-
tage that netCDF files are compact, requiring very little overhead to store the ancillary data that
makes the datasets self-describing. A disadvantage of this organization is that any operation on a
netCDF dataset that requires the header to grow (or, less likely, to shrink), for example adding
new dimensions or new variables, requires moving the data by copying it. This expense is

incurred whemc_enddef is called, after a previous call te_redef . If you create all necessary
dimensions, variables, and attributeeforewriting data, and avoid later additions and renamings

of netCDF components that require more space in the header part of the file, you avoid the cost
associated with later changing the header.

When the size of the header is changed, data in the file is moved, and the location of data values in
the file changes. If another program is reading the netCDF dataset during redefinition, its view of
the file will be based on old, probably incorrect indexes. If netCDF datasets are shared across
redefinition, some mechanism external to the netCDF library must be provided that prevents
access by readers during redefinition, and causes the readerai¢osgadl before any subse-

guent access.

The fixed-size data part that follows the header contains all the variable data for variables that do
not employ an unlimited dimension. The data for each variable is stored contiguously in this part
of the file. If there is no unlimited dimension, this is the last part of the netCDF file.

The record-data part that follows the fixed-size data consists of a variable number of fixed-size
records, each of which contains data for all the record variables. The record data for each variable
is stored contiguously in each record.

The order in which the variable data appears in each data section is the same as the order in which
the variables were defined, in increasing numerical order by netCDF variable ID. This knowledge

can sometimes be used to enhance data access performance, since the best data access is currently
achieved by reading or writing the data in sequential order.

9.2 The Extended XDR Layer

XDR is a standard for describing and encoding data and a library of functions for external data
representation, allowing programmers to encode data structures in a machine-independent way.
NetCDF employs an extended form of XDR for representing information in the header part and
the data parts. This extended XDR is used to write portable data that can be read on any other
machine for which the library has been implemented.

The cost of using a canonical external representation for data varies according to the type of data
and whether the external form is the same as the machine’s native form for that type.

For some data types on some machines, the time required to convert data to and from external
form can be significant. The worst case is reading or writing large arrays of floating-point data on
a machine that does not use IEEE floating-point as its native representation.

9.3 The l/O Layer

An I/O layer implemented much like the C standard I/O (stdio) library is used by netCDF to read
and write portable data to netCDF datasets. Hence an understanding of the standard I/O library
provides answers to many questions about multiple processes accessing data concurrently, the use

of 1/0 buffers, and the costs of opening and closing netCDF files. In particular, it is possible to
have one process writing a netCDF dataset while other processes read it. Data reads and writes are
no more atomic than calls to stdiead() andfwrite() . Annc_sync call is analogous to the

fflush call in the C standard I/O library, writing unwritten buffered data so other processes can
read it;nc_sync also brings header changes up-to-date (for example, changes to attribute values).

NC_SHAREIs analogous to setting a stdio stream to be unbufferedrwithONBF flag toset-
vbuf.

As in the stdio library, flushes are also performed when “seeks” occur to a different area of the
file. Hence the order of read and write operations can influence 1/0 performance significantly.

Reading data in the same order in which it was written within each record will minimize buffer

flushes.

You should not expect netCDF data access to work with multiple writers having the same file
open for writing simultaneously.

It is possible to tune an implementation of netCDF for some platforms by replacing the 1/O layer
with a different platform-specific 1/0 layer. This may change the similarities between netCDF and
standard 1/0O, and hence characteristics related to data sharing, buffering, and the cost of /O oper-
ations.

The distributed netCDF implementation is meant to be portable. Platform-specific ports that fur-
ther optimize the implementation for better I/O performance are practical in some cases.

9.4 UNICOS Optimization

As was mentioned in the previous section, it is possible to replace the I/O layer in order to
increase I/O efficiency. This has been done for UNICOS, the operating system of Cray computers
similar to the Cray Y-MP.

Additionally, it is possible for the user to obtain even greater I/O efficiency through appropriate
setting of theNETCDF_FFIOSPECenvironment variable. This variable specifies the Flexible File I/
O buffers for netCDF 1/0O when executing under the UNICOS operating system (the variable is
ignored on other operating systems). An appropriate specification can greatly increase the effi-
ciency of netCDF I/O—to the extent that it can surpass default FORTRAN binary 1/0O. Possible
specifications include the following:

bufa:336:2 2, asynchronous, I/O buffers of 336 blocks each (i.e., double buffering). This
is the default specification and favors sequential 1/0.

cache:256:8 8, synchronous, 256-block buffers. This favors larger random accesses.

cachea:256:8 8, asynchronous, 256-block buffers with a 2 block read-ahead/write-behind

2 factor. This also favors larger random accesses.

cachea:8:256 256, asynchronous, 8-block buffers without read-ahead/write-behind. This
0 favors many smaller pages without read-ahead for more random accesses as
typified by slicing netCDF arrays.

cache:8:256, This is a two layer cache. The first (synchronous) layer is composed of 256
Sgihfi'SdS:l 8-block buffers in memory, the second (asynchronous) layer is composed of

4 1024-block buffers on the SSD. This scheme works well when accesses
proceed through the dataset in random waves roughly 2x1024-blocks wide.

All of the options/configurations supported in CRI's FFIO library are available through this mech-
anism. We recommend that you look at CRI’s I/O optimization guide for information on using
FFIO to it's fullest. This mechanism is also compatible with CRI's EIE I/O library.

Tuning theNETCDF_FFIOSPEG/ariable to a program’s 1/0O pattern can dramatically improve per-
formance. Speedups of two orders of magnitude have been seen.

10 NetCDF Utilities

One of the primary reasons for using the netCDF interface for applications that deal with arrays is
to take advantage of higher-level netCDF utilities and generic applications for netCDF data. Cur-
rently two netCDF utilities are available as part of the netCDF software distribution:

* ncdump reads a netCDF dataset and prints a textual representation of the information in the
dataset

* ncgen reads a textual representation of a netCDF dataset and generates the corresponding
binary netCDF file or a C or FORTRAN program to create the netCDF dataset

Two more general-purpose netCDF utilities are available as part of the FAN (File Array Notation)
package:

* ncmeta prints selected metadata from one or more netCDF datasets
* ncrob performs various operations (copy, sum, mean, max, min, ...) with data read from and
printed or written to text files and/or selected parts of netCDF variables or attributes.

For more information on FAN, sé@p://www.unidata.ucar.edu/packages/netcdf/
fan_utils.html

Users have contributed other netCDF utilities, and various visualization and analysis packages are
available that access netCDF data. For an up-to-date list of freely-available and commercial soft-
ware that can access or manipulate netCDF data, see the NetCDF Software/list,
www.unidata.ucar.edu/packages/netcdf/software.html

This chapter describes thegen andncdump utilities. These two tools convert between binary
netCDF datasets and a text representation of netCDF datasets. The output@fand the input

to ncgen is a text description of a netCDF dataset in a tiny language known as CDL (network
Common data form Description Language).

10.1 CDL Syntax

Below is an example of CDL, describing a netCDF dataset with several named dimeasions (
lon , time), variables{,t, p,rh,lat ,lon ,time), variable attributesuits , _Fillvalue
valid_range), and some data.

netcdf foo { // example netCDF specification in CDL

dimensions:
lat = 10, lon = 5, time = unlimited;

variables:

int lat(lat), lon(lon), time(time);
float z(time,lat,lon), t(time,lat,lon);
double p(time,lat,lon);

int rh(time,lat,lon);

lat:units = "degrees_north";
lon:units = "degrees_east";
time:units = "seconds";
Z:units = "meters";
z:valid_range = 0., 5000.;
p:_FillValue =-9999.;
rh:_FillvValue = -1;

data:
lat =0, 10, 20, 30, 40, 50, 60, 70, 80, 90;
lon =-140, -118, -96, -84, -52;

}

All CDL statements are terminated by a semicolon. Spaces, tabs, and newlines can be used freely
for readability. Comments may follow the double slash charaktters any line.

A CDL description consists of three optional parts: dimensions, variables, and data. The variable
part may contain variable declarations and attribute assignments.

A dimension is used to define the shape of one or more of the multidimensional variables
described by the CDL description. A dimension has a name and a length. At most one dimension
in a CDL description can have the unlimited length, which means a variable using this dimension
can grow to any length (like a record number in a file).

A variable represents a multidimensional array of values of the same type. A variable has a name,

a data type, and a shape described by its list of dimensions. Each variable may also have associ-
ated attributes (see below) as well as data values. The name, data type, and shape of a variable are
specified by its declaration in the variable section of a CDL description. A variable may have the
same name as a dimension; by convention such a variable contains coordinates of the dimension it
names.

An attribute contains information about a variable or about the whole netCDF dataset. Attributes
may be used to specify such properties as units, special values, maximum and minimum valid val-
ues, and packing parameters. Attribute information is represented by single values or arrays of
values. For examplenits is an attribute represented by a character array suelsias . An

attribute has an associated variable, a name, a data type, a length, and a value. In contrast to vari-
ables that are intended for data, attributes are intended for ancillary data (data about data).

In CDL, an attribute is designated by a variable and attribute name, separated by a:cpltng*
possible to assign global attributes to the netCDF dataset as a whole by omitting the variable name
and beginning the attribute name with a color)(The data type of an attribute in CDL is

derived from the type of the value assigned to it. The length of an attribute is the number of data
values or the number of characters in the character string assigned to it. Multiple values are
assigned to non-character attributes by separating the values with corijnad ¢alues

assigned to an attribute must be of the same type.

CDL names for variables, attributes, and dimensions may be any combination of alphabetic or
numeric characters as well as and ‘-’ characters, but names beginning withare reserved for

use by the library. Case is significant in CDL names. The netCDF library does not enforce any
restrictions on netCDF names, so it is possible (though unwise) to define variables with names
that are not valid CDL names. The names for the primitive data types are reserved words in CDL,
so the names of variables, dimensions, and attributes must not be type names.

The optional data section of a CDL description is where netCDF variables may be initialized. The
syntax of an initialization is simple:

variable=value_1, value 2, ;..

The comma-delimited list of constants may be separated by spaces, tabs, and newlines. For multi-
dimensional arrays, the last dimension varies fastest. Thus, row-order rather than column order is
used for matrices. If fewer values are supplied than are needed to fill a variable, it is extended with
the fill value. The types of constants need not match the type declared for a variable; coercions are
done to convert integers to floating point, for example. All meaningful type conversions are sup-
ported.

A special notation for fill values is supported: theharacter designates a fill value for variables.

10.2 CDL Data Types

The CDL data types are:

char Characters.

byte Eight-bit integers.

short 16-bit signed integers.

int 32-bit signed integers.

long (Deprecated, currently synonymous with int)
float IEEE single-precision floating point (32 bits).
real (Synonymous with float).

double IEEE double-precision floating point (64 bits).

Except for the added data-typge and the lack of the type qualifietisigned , CDL supports
the same primitive data types as C. In declarations, type names may be specified in either upper or
lower case.

Thebyte type differs from thehar type in that it is intended for eight-bit data, and the zero byte
has no special significance, as it may for character dataxcgére utility convertsbyte declara-
tions tochar declarations in the output C code an®@YOE, INTEGER*1, or similar platform-spe-
cific declaration in output FORTRAN code.

Theshort type holds values between -32768 and 32767.nktgen utility convertsshort decla-
rations toshort declarations in the output C code aneNttEGER*2 declaration in output FOR-
TRAN code.

Theint type can hold values between -2147483648 and 214748364 hcgddre utility converts
int declarations tint declarations in the output C code andNfCEGERdeclarations in output
FORTRAN code. In CDL declaratiofrgeger andlong are accepted as synonymsifor .

Thefloat type can hold values between about -3.4+38 and 3.4+38, with external representation
as 32-bit IEEE normalized single-precision floating-point numbersndgee utility converts

float declarations téioat declarations in the output C code an@&#aL declarations in output
FORTRAN code. In CDL declaratiomsal is accepted as a synonym fioat

Thedouble type can hold values between about -1.7+308 and 1.7+308, with external representa-
tion as 64-bit IEEE standard normalized double-precision, floating-point numbets.géhe

utility convertsdouble declarations tdouble declarations in the output C code ant@BLE
PRECISION declarations in output FORTRAN code.

10.3 CDL Notation for Data Constants
This section describes the CDL notation for constants.

Attributes are initialized in theariables ~ section of a CDL description by providing a list of
constants that determines the attribute’s type and length. (In the C and FORTRAN procedural
interfaces to the netCDF library, the type and length of an attribute must be explicitly provided
when it is defined.) CDL defines a syntax for constant values that permits distinguishing among
different netCDF types. The syntax for CDL constants is similar to C syntax, except that type suf-
fixes are appended $aort s andfloat s to distinguish them fromt s anddouble S.

A byte constant is represented by a single character or multiple character escape sequence
enclosed in single quotes. For example:

'a’ /[ASCll a

\O' /l azero byte

\n' // ASCII newline character

\33" // ASCII escape character (33 octal)
"x2b' // ASCII plus (2b hex)

\376' // 377 octal = -127 (or 254) decimal

Character constants are enclosed in double quotes. A character array may be represented as a
string enclosed in double quotes. Multiple strings are concatenated into a single array of charac-
ters, permitting long character arrays to appear on multiple lines. To support multiple variable-
length string values, a conventional delimiter such ‘amay be used, but interpretation of any

such convention for a string delimiter must be implemented in software above the netCDF library
layer. The usual escape conventions for C strings are honored. For example:

"a" I ASCII ‘&’
"Two\nlines\n" // a 10-character string with two embedded newlines

"a bell:\0O07" // a string containing an ASCII bell
"ab","cde" //the same as "abcde"

The form of ashort constant is an integer constant with &lnor ‘S’ appended. If ahort con-
stant begins withd’, it is interpreted as octal. When it begins withx’, it is interpreted as a hexa-
decimal constant. For example:

2s /I a short 2
0123s // octal
Ox7ffs // hexadecimal

The form of annt constant is an ordinary integer constant. Ifinanconstant begins witho’, it
is interpreted as octal. When it begins with ‘0x’, it is interpreted as a hexadecimal constant. Exam-
ples of validint constants include:

-2
0123 /I octal
Ox7ff /l hexadecimal

1234567890L // deprecated, uses old long suffix

Thefloat type is appropriate for representing data with about seven significant digits of preci-
sion. The form of dloat constant is the same as a C floating-point constant with' an “F’
appended. A decimal pointis required in a Ciat to distinguish it from an integer. For exam-
ple, the following are all acceptalileat constants:

-2.0f

3.14159265358979f /I will be truncated to less precision
1f

Af

Thedouble type is appropriate for representing floating-point data with about 16 significant dig-
its of precision. The form of éuble constant is the same as a C floating-point constant. An
optional d’ or * D' may be appended. A decimal point is required in a Gidlble to distinguish

it from aninteger . For example, the following are all acceptable double constants:

-2.0
3.141592653589793

1.0e-20
1d

10.4 ncgen

Thencgen tool generates a netCDF file or a C or FORTRAN program that creates a netCDF
dataset. If no options are specified in invokiagen , the program merely checks the syntax of
the CDL input, producing error messages for any violations of CDL syntax.

UNIX syntax for invokingncgen :

ncgen [-b] [-0 netcdf-filg [-c] [-f] [-n] [input-file]

where:

-0 netcdf-file

Examples

Create a (binary) netCDF file. If the ° option is absent, a default file
name will be constructed from the netCDF name (specified after the
netcdf keyword in the input) by appending thec'’ extension Warn-
ing: if a file already exists with the specified name it will be overwrit-
ten.

Name for the netCDF file created. If this option is specified, it implies the
‘-b * option. (This option is necessary because netCDF files are direct-
access files created with seek calls, and hence cannot be written to stan-
dard output.)

Generate C source code that will create a netCDF dataset matching the
netCDF specification. The C source code is written to standard output.
This is only useful for relatively small CDL files, since all the data is
included in variable initializations in the generated program.

Generate FORTRAN source code that will create a netCDF dataset match-
ing the netCDF specification. The FORTRAN source code is written to
standard output. This is only useful for relatively small CDL files, since all
the data is included in variable initializations in the generated program.

Deprecated. Like thet ' option, except creates a netCDF file with a
‘.cdf ' extension instead of annc * extension, in the absence of an output
filename specified by theo'’ option. This option is only supported for
backward compatibility.

Check the syntax of the CDL fiteo.cdl

ncgen foo.cdl

From the CDL filefoo.cdl , generate an equivalent binary netCDF file namaedc

ncgen -o bar.nc foo.cdl

From the CDL filefoo.cdl , generate a C program containing netCDF function invocations that
will create an equivalent binary netCDF dataset:

ncgen -c foo.cdl > foo.c

10.5 ncdump

Thencdump tool generates the CDL text representation of a netCDF dataset on standard output,
optionally excluding some or all of the variable data in the output. The outpubétomp is

intended to be acceptable as inpuidgen . Thusncdump andncgen can be used as inverses to
transform data representation between binary and text representations.

ncdump may also be used as a simple browser for netCDF datasets, to display the dimension
names and lengths; variable names, types, and shapes; attribute names and values; and optionally,
the values of data for all variables or selected variables in a netCDF dataset.

ncdump defines a default format used for each type of netCDF variable data, but this can be over-
ridden if aC_format attribute is defined for a netCDF variable. In this casimp will use the

C_format attribute to format values for that variable. For example, if floating-point data for the
netCDF variable is known to be accurate to only three significant digits, it might be appropriate

to use this variable attribute:

Z:C_format = "%.3g"

ncdump uses '’ to represent data values that are equal to #igvalue attribute for a variable,
intended to represent data that has not yet been written. If a variable ha#ivedue attribute,
the default fill value for the variable type is used unless the variable is of byte type.

UNIX syntax for invokingncdump:

ncdump [-c|-h] [-v varl,...] [-b lang] [-f lang]
[l len [-p fdig[,ddig]] [-n namé [input-filg]
where:
-C Show the values afoordinatevariables (variables that are also dimensions)

as well as the declarations of all dimensions, variables, and attribute values.
Data values of non-coordinate variables are not included in the output. This
is often the most suitable option to use for a brief look at the structure and
contents of a netCDF dataset.

-h Show only theneaderinformation in the output, that is, output only the dec-
larations for the netCDF dimensions, variables, and attributes of the input
file, but no data values for any variables. The output is identical to using the
‘-c " option except that the values of coordinate variables are not included.
(At most one of-c ' or *-h ’ options may be present.)

-vvarl,... The output will include data values for the specified variables, in addition to
the declarations of all dimensions, variables, and attributes. One or more
variables must be specified by name in the comma-delimited list following
this option. The list must be a single argument to the command, hence can-
not contain blanks or other white space characters. The named variables
must be valid netCDF variables in the input-file. The default, without this
option and in the absence of theor ‘-h ' options, is to include data val-
ues forall variables in the output.

-b lang

-f lang

-l len

A brief annotation in the form of a CDL comment (text beginning with the
characters//) will be included in the data section of the output for each
‘row’ of data, to help identify data values for multidimensional variables. If
lang begins with € or ‘c’, then C language conventions will be used (zero-
based indices, last dimension varying fastestianfy begins with F' or *f 7,

then FORTRAN language conventions will be used (one-based indices, first
dimension varying fastest). In either case, the data will be presented in the
same order; only the annotations will differ. This option may be useful for
browsing through large volumes of multidimensional data.

Full annotations in the form of trailing CDL comments (text beginning with
the characterg/* ') for every data value (except individual characters in
character arrays) will be included in the data sectiofarifybegins with €

or ‘c’, then C language conventions will be used (zero-based indices, last
dimension varying fastest). lding begins with £ or ‘f ’, then FORTRAN
language conventions will be used (one-based indices, first dimension vary-
ing fastest). In either case, the data will be presented in the same order; only
the annotations will differ. This option may be useful for piping data into
other filters, since each data value appears on a separate line, fully identified.
(At most one of-b’ or *-f * options may be present.)

Changes the default maximum line length (80) used in formatting lists of
non-character data values.

-p float_digits[,double_digits]

-Nn hame

Specifies default precision (number of significant digits) to use in displaying
floating-point or double precision data values for attributes and variables. If
specified, this value overrides the value of théormat attribute, if any, for

a variable. Floating-point data will be displayed wilbat _digitssignificant
digits. If double_digitds also specified, double-precision values will be dis-
played with that many significant digits. In the absence of gmyspecifica-
tions, floating-point and double-precision data are displayed with 7 and 15
significant digits respectively. CDL files can be made smaller if less preci-
sion is required. If both floating-point and double precisions are specified,
the two values must appear separated by a comma (no blanks) as a single
argument to the command.

CDL requires a name for a netCDF dataset, for usedagri -b ' in gener-

ating a default netCDF dataset name. By defacdtymp constructs this

name from the last component of the file name of the input netCDF dataset
by stripping off any extension it has. Use the ‘option to specify a differ-

ent name. Although the output file name usednbyeh -b ’ can be speci-

fied, it may be wise to havedump change the default name to avoid
inadvertently overwriting a valuable netCDF dataset when usthgnp,

editing the resulting CDL file, and usingcgen -b ' to generate a new

netCDF dataset from the edited CDL file.

Examples
Look at the structure of the data in the netCDF dataset :
ncdump -c foo.nc

Produce an annotated CDL version of the structure and data in the netCDF dataset using
C-style indexing for the annotations:

ncdump -b ¢ foo.nc > foo.cdl

Output data for only the variablesind andvwind from the netCDF datastb.nc , and show
the floating-point data with only three significant digits of precision:

ncdump -v uwind,vwind -p 3 foo.nc

Produce a fully-annotated (one data value per line) listing of the data for the vamiedgle using
FORTRAN conventions for indices, and changing the netCDF dataset name in the resulting CDL
file to omega:

ncdump -v omega -f fortran -n omega foo.nc > Z.cdl

11 Answers to Some Frequently Asked Ques-
tions

This chapter contains answers to some of the most frequently asked questions about netCDF. A
more comprehensive and up-to-date FAQ document for netCDF is maintaimgd at
www.unidata.ucar.edu/packages/netcdf/fag.html

What Is netCDF?

NetCDF (network Common Data Form) is an interface for array-oriented data access and a freely-
distributed collection of software libraries for C, FORTRAN, C++, and Perl that provide imple-
mentations of the interface. The netCDF software was developed by Glenn Davis, Russ Rew, and
Steve Emmerson at the Unidata Program Center in Boulder, Colorado, and augmented by contri-
butions from other netCDF users. The netCDF libraries define a machine-independent format for
representing arrays. Together, the interface, libraries, and format support the creation, access, and
sharing of array-oriented data.

NetCDF data is:

» Self-describing. A netCDF dataset includes information about the data it contains.

» portable. A netCDF dataset is represented in a form that can be accessed by computers with
different ways of storing integers, characters, and floating-point numbers.

» Direct-access. A small subset of a large dataset may be accessed efficiently, without first read-
ing through all the preceding data.

* Appendable. Data can be appended to a netCDF dataset along one dimension for multiple
variables without copying the dataset or redefining its structure. The structure of a netCDF
dataset may also be changed, though in some cases this is implemented by copying the data.

» Sharable. One writer and multiple readers may simultaneously access the same netCDF
dataset.

How do | get the netCDF software package?
Source distributions are available via anonymous FTP from the directory

ftp://ftp.unidata.ucar.edu/pub/netcdf/

Files in that directory include:

netcdf.tar.Z A compressed tar file of source code for the latest general release.

netcdf-beta.tar.Z The current beta-test release.

Binary distributions for some platforms are available from the directory

ftp://ftp.unidata.ucar.edu/pub/binary/

Source for the Perl interface is available as a separate package, via anonymous FTP from the
directory

ftp://ftp.unidata.ucar.edu/pub/netcdf-perl/

Is there any access to netCDF information on the World Wide Web?

Yes, the latest version of this FAQ document as well as a hypertext version of the NetCDF User’s
Guide and other information about netCDF are available from

http://www.unidata.ucar.edu/packages/netcdf

What has changed since the previous release?

Version 3 keeps the same format, but introduces new interfaces for C and FORTRAN that provide
automatic type conversion and improved type safety. For more details, see:

http://www.unidata.ucar.edu/packages/netcdf/release-notes.html

Is there a mailing list for netCDF discussions and questions?

Yes. For information about the mailing list and how to subscribe or unsubscribe, send a message
to majordomo@unidata.ucar.edu with no subject and with the following line in the body of the
message:

info netcdfgroup

Who else uses netCDF?

The netCDF mailing list has almost 500 addresses (some of which are aliases to more addresses)
in fifteen countries. Several groups have adopted netCDF as a standard way to represent some
forms of array-oriented data, including groups in the atmospheric sciences, hydrology, oceanogra-
phy, environmental modeling, geophysics, chromatography, mass spectrometry, and neuro-imag-

ing.
A description of some of the projects and groups that have used netCDF is available from

http://www.unidata.ucar.edu/packages/netcdf/usage.html

What is the physical format for a netCDF files?

See Chapter 9 “NetCDF File Structure and Performance,” page 131, for an explanation of the
physical structure of netCDF data at a high enough level to make clear the performance implica-
tions of different data organizations. See Appendix B “File Format Specification,” page 151, for a
detailed specification of the file format.

Programs that access netCDF data should perform all access through the documented interfaces,
rather than relying on the physical format of netCDF data. That way, any future changes to the
format will not require changes to programs, since any such changes will be accompanied by
changes in the library to support both the old and new versions of the format.

What does netCDF run on?

The current version of netCDF has been tested successfully on the following platforms:

« AIX-4.1

« HPUX-9.05

* IRIX-5.3

* IRIX64-6.1

* MSDOS (using gcc, f2c, and GNU make)
+ OSF1-3.2

* OpenVMS-6.2
« 0S/221

« SUNOS-4.1.4
+ SUNOS-5.5

* ULTRIX-4.5

* UNICOS-8

* Windows NT-3.51

What other software is available for netCDF data?

Utilities available in the current netCDF distribution from Unidatanagemp, for converting

netCDF datasets to an ASCII human-readable formpegedd for converting from the ASCII
human-readable form back to a binary netCDF file or a C or FORTRAN program for generating
the netCDF dataset.

Several commercial and freely available analysis and data visualization packages have been
adapted to access netCDF data. More information about these packages and other software that
can be used to manipulate or display netCDF data is available from

http://www.unidata.ucar.edu/packages/netcdf/software.html

What other formats are available for scientific data?

The Scientific Data Format Information FAQyailable fronnhttp://fits.cv.nrao.edultraf-
fic/scidataformats/fag.html , provides a good description of other access interfaces and for-
mats for array-oriented data, including CDF and HDF.

How do | make a bug report?

If you find a bug, send a descriptionst@port@unidata.ucar.edu . This is also the address to
use for questions or discussions about netCDF that are not appropriate for theeatitigeoup
mailing list.

How do | search through past problem reports?

A search form is available at the bottom of the netCDF home page providing a full-text search of
the support questions and answers about netCDF provided by Unidata support staff.

How does the C++ interface differ from the C interface?

It provides all the functionality of the C interface (except for the mapped array access of
nc_put_varm_ typeandnc_get varm_ typg. With the C++ interfacen(tp://www.uni-
data.ucar.edu/packages/netcdf/cxxdoc_toc.html) no IDs are needed for netCDF compo-
nents, there is no need to specify types when creating attributes, and less indirection is required
for dealing with dimensions. However, the C++ interface is less mature and less-widely used than
the C interface, and the documentation for the C++ interface is less extensive, assuming a famil-
iarity with the netCDF data model and the C interface.

How does the FORTRAN interface differ from the C interface?

It provides all the functionality of the C interface. The FORTRAN interface uses FORTRAN con-
ventions for array indices, subscript order, and strings. There is no difference in the on-disk for-
mat for data written from the different language interfaces. Data written by a C language program
may be read from a FORTRAN program and vice-versa.

How does the Perl interface differ from the C interface?

It provides all the functionality of the C interface. The Perl interfame/(www.uni-
data.ucar.edu/packages/netcdf-perl/) uses Perl conventions for arrays and strings. There is
no difference in the on-disk format for data written from the different language interfaces. Data
written by a C language program may be read from a Perl program and vice-versa.

Appendix A Units

The Unidata Program Center has developed a units library to convert between formatted and
binary forms of units specifications and perform unit algebra on the binary form. Though the units
library is self-contained and there is no dependency between it and the netCDF library, it is never-
theless useful in writing generic netCDF programs and we suggest you obtain it. The library and
associated documentation is available fratm//www.unidata.ucar.edu/packages/udun-

its/

The following are examples of units strings that can be interpreted bisthe() function of
the Unidata units library:

10 kilogram.meters/seconds?2

10 kg-m/sec2

10 kg m/s"2

10 kilogram meter second-2

(PI radian)2

degF

100rpm

geopotential meters

33 feet water

milliseconds since 1992-12-31 12:34:0.1 -7:00

A unit is specified as an arbitrary product of constants and unit-names raised to arbitrary integral
powers. Division is indicated by a slagh ‘Multiplication is indicated by white space, a period

‘.7, or a hyphen-’. Exponentiation is indicated by an integer suffix or by the exponentiation
operators*’ and "** ’. Parentheses may be used for grouping and disambiguation. The time stamp
in the last example is handled as a special case.

Arbitrary Galilean transformations (i.g.~= ax + b) are allowed. In particular, temperature con-
versions are correctly handled. The specification:

degF @ 32

indicates a Fahrenheit scale with the origin shifted to thirty-two degrees Fahrenheit (i.e., to zero
Celsius). Thus, the Celsius scale is equivalent to the following unit:

1.8 degF @ 32

Note that the origin-shift operation takes precedence over multiplication. In order of increasing
precedence, the operations are division, multiplication, origin-shift, and exponentiation.

utScan() understands all the Sl prefixes (e.g. “mega” and “milli”) plus their abbreviations (e.g.
“M” and “m”)

The functionutPrint() always encodes a unit specification one way. To reduce misunderstand-
ings, it is recommended that this encoding style be used as the default. In general, a unit is
encoded in terms of basic units, factors, and exponents. Basic units are separated by spaces, and

any exponent directly appends its associated unit. The above examples would be encoded as fol-
lows:

10 kilogram meter second-2

9.8696044 radian2

0.555556 kelvin @ 255.372

10.471976 radian second-1

9.80665 meter2 second-2

98636.5 kilogram meter-1 second-2

0.001 seconds since 1992-12-31 19:34:0.1000 UTC

(Note that the Fahrenheit unit is encoded as a deviation, in fractional kelvins, from an origin at
255.372 kelvin, and that the time in the last example has been referenced to UTC.)

The database for the units library is a formatted file containing unit definitions and is used to ini-
tialize this package. It is the first place to look to discover the set of valid names and symbols.

The format for the units-file is documented internally and the file may be modified by the user as
necessary. In particular, additional units and constants may be easily added (including variant
spellings of existing units or constants).

utScan() is case-sensitive. If this causes difficulties, you might try making appropriate additional
entries to the units-file.

Some unit abbreviations in the default units-file might seem counterintuitive. In particular, note
the following:

For Use Not Which Instead Means
Celsius Celsius C coulomb

gram gram g <standard free fall>
gallon gallon gal <acceleration>
radian radian rad <absorbed dose>
Newton newton or N nt nit (unit of photometry)

For additional information on this units library, please consult the manual pages that come with
the distribution.

Appendix B File Format Specification

This appendix specifies the netCDF file format version 1. This format will be in use at least
through netCDF library version 3.0.

The format is first presented formally, using a BNF grammar notation. In the grammar, optional
components are enclosed between brages(id ‘]). Comments follow // ' characters. Nonter-

minals are in lower case, and terminals are in upper case. A sequence of zero or more occurrences
of an entity are denoted bjgntity ...] .

The Format in Detail
netcdf file := header data
header := magic numrecs dim_array gatt array var_array
magic :='C' 'D' 'F' VERSION_BYTE
VERSION_BYTE :='\001"' // the file format version number
numrecs :=NON_NEG
dim_array := ABSENT | NC_DIMENSION nelems [dim ...]
gatt_array := att_array // global attributes
att_array := ABSENT | NC_ATTRIBUTE nelems [attr ...]
var_array := ABSENT | NC_VARIABLE nelems [var ...]

ABSENT :=ZERO ZERO // Means array not present (equivalent to
/I nelems == 0).

nelems := NON_NEG /[number of elements in following sequence
dim :=name dim_length
name :=string

dim_length := NON_NEG // If zero, this is the record dimension.
/I There can be at most one record dimension.

attr :=name nc_type nelems [values]
nc_type := NC_BYTE | NC_CHAR | NC_SHORT | NC_INT | NC_FLOAT | NC_DOUBLE
var :=name nelems [dimid ...] vatt_array nc_type vsize begin

/I nelems is the rank (dimensionality) of the

/I variable; 0 for scalar, 1 for vector, 2 for
/ matrix, ...

vatt_array := att_array // variable-specific attributes

dimid := NON_NEG /I Dimension ID (index into dim_array) for
[/l variable shape. We say this is a “record
[/l variable” if and only if the first
/I dimension is the record dimension.

vsize = NON_NEG /I Variable size. If not a record variable,
/I the amount of space, in bytes, allocated to
/[that variable’s data. This number is the
/I product of the dimension lengths times the
/l size of the type, padded to a four byte
/I boundary. If a record variable, it is the
/l amount of space per record. The netCDF
/l “record size” is calculated as the sum of
/l the vsize’s of the record variables.
begin := NON_NEG /I Variable start location. The offset in
/I bytes (seek index) in the file of the
/I beginning of data for this variable.
data :=non_recs recs

non_recs := [values ...] // Data for first non-record var, second
/I non-record var, ...

recs :=[rec...] /I First record, second record, ...

rec :=|[values...] [/ Data for first record variable for record
/I n, second record variable for record n, ...
/I See the note below for a special case.

values :=[bytes] | [chars] | [shorts] | [ints] | [floats] | [doubles]

string :=nelems [chars]

bytes :=[BYTE ...] padding

chars :=[CHAR ...] padding

shorts :=[SHORT ...] padding

ints =[INT ...]

floats := [FLOAT ...]

doubles := [DOUBLE ...]

padding := <0, 1, 2, or 3 bytes to next 4-byte boundary>
/I In header, padding is with O bytes. In

/I data, padding is with variable’s fill-value.

NON_NEG := <INT with non-negative value>

ZERO :=<INT with zero value>

BYTE :=<8-bit byte>

CHAR := <8-bit ACSII/ISO encoded character>

SHORT := <16-bit signed integer, Bigendian, two’s complement>
INT :=<32-bit signed integer, Bigendian, two’s complement>
FLOAT := <32-bit IEEE single-precision float, Bigendian>
DOUBLE := <64-bit IEEE double-precision float, Bigendian>

/I tags are 32-bit INTs

NC BYTE =1 /l data is array of 8 bit signed integer
NC_CHAR =2 /I data is array of characters, i.e., text
NC_SHORT =3 /I data is array of 16 bit signed integer
NC_INT =4 /l data is array of 32 bit signed integer
NC_FLOAT :=5 /l data is array of IEEE single precision float
NC_DOUBLE :=6 /l data is array of IEEE double precision float

NC_DIMENSION :=10
NC_VARIABLE =11
NC_ATTRIBUTE :=12

Computing File Offsets

To calculate the offset (position within the file) of a specified data valuexternal_sizedbe the
external size in bytes of one data value of the appropriate type for the specified varabge

NC_BYTE 1
NC_CHAR 1
NC_SHORT 2
NC_INT 4
NC_FLOAT 4
NC_DOUBLE 8

On a call to nc_open (or nc_enddef), scan through the array of variables, demotechy
above, and sum thesizefields of “record” variables to computecsize

Form the products of the dimension lengths for the variable from right to left, skipping the left-
most (record) dimension for record variables, and storing the resulgadactarray for each
variable. For example:

Non-record variable:

dimension lengths: [5 3 27]
product: [210 42 14 7]

Record variable:

dimension lengths: [0 2 9 4]
product: [0 72 36 4]

At this point, the leftmost product, when rounded up to the next multiple of 4, is the variable size,
vsize in the grammar above. For example, in the non-record variable above, the valuesizthe
field is 212 (210 rounded up to a multiple of 4). For the record variable, the vaisiees$ just

72, since this is already a multiple of 4.

Let coordbe an array of the coordinates of the desired data valuepffsetbe the desired result.
Thenoffsetis just the file offset of the first data value of the desired variabld&tgnfield) added
to the inner product of theordandproductvectors times the size, in bytes, of each datum for
the variable. Finally, if the variable is a record variable, the product of the record number,
‘coord[0] ’, and the record sizegcsizeis added to yield the finalfsetvalue.

In pseudo-C code, here’s the calculationidet

for (innerProduct =i = 0; i < var.rank; i++)
innerProduct += product[i] * coord][i]
offset = var.begin;
offset += external_sizeof * innerProduct
if(IS_RECVAR(var))
offset += coord[0] * recsize;

So, to get the data value (in external representation):

Iseek(fd, offset, SEEK_SET);
read(fd, buf, external_sizeof);

A special caseWhere there is exactly one record variable, we drop the restriction that each
record be four-byte aligned, so in this case there is no record padding.

Examples

By using the grammar above, we can derive the smallest valid netCDF file, having no dimensions,
no variables, no attributes, and hence, no data. A CDL representation of the empty netCDF file is

netcdf empty {}

This empty netCDF file has 32 bytes, as you may verify by usdggr -b empty.cdl ' to gen-

erate it from the CDL representation. It begins with the four-byte “magic number” that identifies it
as a netCDF version 1 file: ‘C’, ‘'D’, ‘F’, \001'. Following are seven 32-bit integer zeros repre-
senting the number of records, an empty array of dimensions, an empty array of global attributes,
and an empty array of variables.

Below is an (edited) dump of the file produced on a big-endian machine using the Unix command

od -xcs empty.nc

Each 16-byte portion of the file is displayed with 4 lines. The first line displays the bytes in hexa-
decimal. The second line displays the bytes as characters. The third line displays each group of
two bytes interpreted as a signed 16-bit integer. The fourth line (added by human) presents the
interpretation of the bytes in terms of netCDF components and values.

4344 4601 0000 0000 0000 0000 0000 0000

C D FO001 \0\0\0\0\0\0\0\0\0\\0\

17220 17921 00000 00000 00000 00000 00000 00000
[magic number][Orecords][O dimensions (ABSENT)]

0000 0000 0000 0000 0000 0000 0000 0000

\0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \O

00000 00000 00000 00000 00000 00000 00000 00000
[Oglobal atts (ABSENT)][Ovariables (ABSENT)]

As a slightly less trivial example, consider the CDL

netcdf tiny {
dimensions:

dim = 5;
variables:

short vx(dim);
data:

vx=3,1,4,1,5;
}

which corresponds to a 92-byte netCDF file. The following is an edited dump of this file:

4344 4601 0000 0000 0000 000a 0000 0001

C D FO001 \0\0\0 \0 \0 \0 \0 \n\0 \0 \0001

17220 17921 00000 00000 00000 00010 00000 00001
[magic number][O records] [NC_DIMENSION][1 dimension]

0000 0003 6469 6dO0 0000 0005 0000 0000

\0 \0 \0003 d i m \0 \0 \0 \0005 \0 \0 \0 \0

00000 00003 25705 27904 00000 00005 00000 00000
[3 char name = "dim"][size =5][0 global atts

0000 0000 0000 000b 0000 0001 0000 0002

\0 \0 \0 \0 \0 \0 \0013 \0 \0 \0 001 \0 \0 \0002

00000 00000 00000 00011 00000 00001 00000 00002
(ABSENT)][NC_VARIABLE][1 variable][2 char name =

7678 0000 0000 0001 0000 0000 0000 0000

v x \0 \0 \0 \0 \0001 \0 \0 \0 \0 \0 \0 \0 \0

30328 00000 00000 00001 00000 00000 00000 00000
"vx"]1[1 dimension] [with ID O][O attributes

0000 0000 0000 0003 0000 000c 0000 0050

\0 \0 \0 \0 \0 \0 \0OO3 \0 \0O \0O ff\O W\ P

00000 00000 00000 00003 00000 00012 00000 00080
(ABSENT)] [type NC_SHORT] [size 12 bytes] [offset: 80]

0003 0001 0004 0001 0005 8001
\0 003 \0 001 \0 004 \0 001 \0 005 200 001
00003 00001 00004 00001 00005 -32767

[31T 1l 40 1l SIfil]

Appendix C Summary of C Interface

const char* nc_ing_libvers (void);
const char* nc_strerror (int ncerr);

int nc_create (const char *path, int cmode, int *ncidp);
int nc_open (const char *path, int mode, int *ncidp);
int nc_set_fill (int ncid, int fillmode, int *old_modep);

int nc_redef (int ncid);

int nc_enddef (int ncid);

int nc_sync (int ncid);

int nc_abort (int ncid);

int nc_close (int ncid);

int nc_inq (int ncid, int *ndimsp, int *nvarsp,

int *ngattsp, int *unlimdimidp);
int nc_ing_ndims (int ncid, int *ndimsp);
int nc_ing_nvars (int ncid, int *nvarsp);
int nc_ing_natts (int ncid, int *ngattsp);
int nc_ing_unlimdim (int ncid, int *unlimdimidp);

int nc_def_dim (int ncid, const char *name, size_t len,
int *idp);
int nc_ing_dimid (int ncid, const char *name, int *idp);
int nc_ing_dim (int ncid, int dimid, char *name, size_t *lenp);

int nc_ing_dimname (int ncid, int dimid, char *name);
int nc_ing_dimlen (int ncid, int dimid, size_t *lenp);
int nc_rename_dim (int ncid, int dimid, const char *name);

int nc_def var (int ncid, const char *name, nc_type xtype,
int ndims, const int *dimidsp, int *varidp);

int nc_ing_var (int ncid, int varid, char *name,
nc_type *xtypep, int *ndimsp, int *dimidsp,
int *nattsp);

int nc_ing_varid (int ncid, const char *name, int *varidp);

int nc_ing_varname (int ncid, int varid, char *name);

int nc_ing_vartype (int ncid, int varid, nc_type *xtypep);

int nc_ing_varndims (int ncid, int varid, int *ndimsp);

int nc_ing_vardimid (int ncid, int varid, int *dimidsp);

int nc_ing_varnatts (int ncid, int varid, int *nattsp);

int nc_rename_var (int ncid, int varid, const char *name);

int nc_put_var_text (int ncid, int varid, const char *op);

int nc_get_var_text (int ncid, int varid, char *ip);

int nc_put_var_uchar (int ncid, int varid, const unsigned char *op);
int nc_get_var_uchar (int ncid, int varid, unsigned char *ip);
int nc_put_var_schar (int ncid, int varid, const signed char *op);
int nc_get_var_schar (int ncid, int varid, signed char *ip);

int nc_put_var_short (int ncid, int varid, const short *op);

int nc_get_var_short (int ncid, int varid, short *ip);

int nc_put_var_int (int ncid, int varid, const int *op);

int nc_get_var_int (int ncid, int varid, int *ip);

int nc_put_var_long (int ncid, int varid, const long *op);
int nc_get_var_long (int ncid, int varid, long *ip);

int nc_put_var_float (int ncid, int varid, const float *op);

int nc_get_var_float (int ncid, int varid, float *ip);

int nc_put_var_double (int ncid, int varid, const double *op);

int nc_get_var_double (int ncid, int varid, double *ip);

int nc_put_varl_text (int ncid, int varid, const size_t *indexp,
const char *op);

int nc_get_varl_text (int ncid, int varid, const size_t *indexp,
char *ip);

int nc_put_varl_uchar (int ncid, int varid, const size_t *indexp,
const unsigned char *op);

int nc_get_varl_uchar (int ncid, int varid, const size_t *indexp,
unsigned char *ip);

int nc_put_varl_schar (int ncid, int varid, const size_t *indexp,
const signed char *op);

int nc_get_varl_schar (int ncid, int varid, const size_t *indexp,
signed char *ip);

int nc_put_varl_short (int ncid, int varid, const size_t *indexp,
const short *op);

int nc_get_varl_short (int ncid, int varid, const size_t *indexp,
short *ip);

int nc_put_varl_int (int ncid, int varid, const size_t *indexp,
const int *op);

int nc_get_varl_int (int ncid, int varid, const size_t *indexp,
int *ip);

int nc_put_varl_long (int ncid, int varid, const size_t *indexp,
const long *op);

int nc_get_varl_long (int ncid, int varid, const size_t *indexp,
long *ip);

int nc_put_varl_float (int ncid, int varid, const size_t *indexp,
const float *op);

int nc_get_varl_float (int ncid, int varid, const size_t *indexp,
float *ip);

int nc_put_varl_double(int ncid, int varid, const size_t *indexp,
const double *op);

int nc_get_varl_double(int ncid, int varid, const size_t *indexp,
double *ip);

int nc_put_vara_text (int ncid, int varid, const size_t *startp,
const size_t *countp, const char *op);

int nc_get_vara_text (int ncid, int varid, const size_t *startp,
const size_t *countp, char *ip);

int nc_put_vara_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, const unsigned char *op);

int nc_get_vara_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, unsigned char *ip);

int nc_put_vara_schar (int ncid, int varid, const size_t *startp,
const size_t *countp, const signed char *op);

int nc_get_vara_schar (int ncid, int varid, const size_t *startp,
const size_t *countp, signed char *ip);

int nc_put_vara_short (int ncid, int varid, const size_t *startp,
const size_t *countp, const short *op);

int nc_get_vara_short (int ncid, int varid, const size_t *startp,
const size_t *countp, short *ip);

int nc_put_vara_int (int ncid, int varid, const size_t *startp,
const size_t *countp, const int *op);

int nc_get_vara_int (int ncid, int varid, const size_t *startp,
const size_t *countp, int *ip);

int nc_put_vara_long (int ncid, int varid, const size_t *startp,
const size_t *countp, const long *op);

int nc_get_vara_long (int ncid, int varid, const size_t *startp,
const size_t *countp, long *ip);

int nc_put_vara_float (int ncid, int varid, const size_t *startp,
const size_t *countp, const float *op);

int nc_get_vara_float (int ncid, int varid, const size_t *startp,
const size_t *countp, float *ip);

int nc_put_vara_double(int ncid, int varid, const size_t *startp,
const size_t *countp, const double *op);

int nc_get_vara_double(int ncid, int varid, const size_t *startp,
const size_t *countp, double *ip);

int nc_put_vars_text (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const char *op);

int nc_get_vars_text (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
char *ip);

int nc_put_vars_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const unsigned char *op);

int nc_get_vars_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
unsigned char *ip);

int nc_put_vars_schar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const signed char *op);

int nc_get_vars_schar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
signed char *ip);

int nc_put_vars_short (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const short *op);

int nc_get_vars_short (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
short *ip);

int nc_put_vars_int (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const int *op);

int nc_get_vars_int (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
int *ip);

int nc_put_vars_long (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const long *op);

int nc_get_vars_long (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
long *ip);

int nc_put_vars_float (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const float *op);

int nc_get_vars_float (int ncid, int varid, const size_t *startp,

const size_t *countp, const ptrdiff_t *stridep,
float *ip);

int nc_put_vars_double(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const double *op);

int nc_get_vars_double(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
double *ip);

int nc_put_varm_text (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const char *op);

int nc_get_varm_text (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, char *ip);

int nc_put_varm_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const unsigned char *op);

int nc_get_varm_uchar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, unsigned char *ip);

int nc_put_varm_schar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const signed char *op);

int nc_get_varm_schar (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, signed char *ip);

int nc_put_varm_short (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const short *op);

int nc_get_varm_short (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, short *ip);

int nc_put_varm_int (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const int *op);

int nc_get_varm_int (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, int *ip);

int nc_put_varm_long (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const long *op);

int nc_get_varm_long (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, long *ip);

int nc_put_varm_float (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const float *op);

int nc_get_varm_float (int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, float *ip);

int nc_put_varm_double(int ncid, int varid, const size_t *startp,
const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t *imapp, const double *op);

int nc_get_varm_double(int ncid, int varid, const size_t *startp,

const size_t *countp, const ptrdiff_t *stridep,
const ptrdiff_t * imap, double *ip);

int nc_ing_att (int ncid, int varid, const char *name,
nc_type *xtypep, size_t *lenp);
int nc_ing_attid (int ncid, int varid, const char *name, int *idp);
int nc_ing_atttype (int ncid, int varid, const char *name,
nc_type *xtypep);
int nc_ing_attlen (int ncid, int varid, const char *name,
size_t *lenp);
int nc_ing_attname (int ncid, int varid, int atthum, char *name);
int nc_copy_att (int ncid_in, int varid_in, const char *name,
int ncid_out, int varid_out);
int nc_rename_att (int ncid, int varid, const char *name,
const char *newname);
int nc_del_att (int ncid, int varid, const char *name);
int nc_put_att_text (int ncid, int varid, const char *name, size_t len,
const char *op);
int nc_get_att_text (int ncid, int varid, const char *name, char *ip);
int nc_put_att_uchar (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const unsigned char *op);
int nc_get_att_uchar (int ncid, int varid, const char *name,
unsigned char *ip);
int nc_put_att_schar (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const signed char *op);
int nc_get_att schar (int ncid, int varid, const char *name,
signed char *ip);
int nc_put_att_short (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const short *op);
int nc_get_att_short (int ncid, int varid, const char *name, short *ip);
int nc_put_att_int (int ncid, int varid, const char *name,
nc_type xtype,size_t len, const int *op);
int nc_get_att_int (int ncid, int varid, const char *name, int *ip);
int nc_put_att_long (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const long *op);
int nc_get_att_long (int ncid, int varid, const char *name, long *ip);
int nc_put_att_float (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const float *op);
int nc_get_att_float (int ncid, int varid, const char *name, float *ip);
int nc_put_att_double (int ncid, int varid, const char *name,
nc_type xtype, size_t len, const double *op);
int nc_get_att double (int ncid, int varid, const char *name,
double *ip);

Appendix D NetCDF 2 C Transition Guide

Overview of C interface changes

NetCDF version 3 includes a complete rewrite of the netCDF library. It is about twice as fast as
the previous version. The netCDF file format is unchanged, so files written with version 3 can be
read with version 2 code and vice versa.

The core library is now written in ANSI C. For example, prototypes are used throughout as well
asconst qualifiers where appropriate. You must have an ANSI C compiler to compile this ver-
sion.

Rewriting the library offered an opportunity to implement improved C and FORTRAN interfaces
that provide some significant benefits:

* type safety, by eliminating the need to use generic void* pointers;

* automatic type conversions, by eliminating the undesirable coupling between the language-
independent external netCDF types (NC_BYTE, ..., NC_DOUBLE) and language-dependent
internal data types (char, ..., double);

» support for future enhancements, by eliminating obstacles to the clean addition of support for
packed data and multithreading;

» more standard error behavior, by uniformly communicating an error status back to the calling
program in the return value of each function.

It is not necessary to rewrite programs that use the version 2 C interface, because the netCDF-3
library includes a backward compatibility interface that supports all the old functions, globals,
and behavior. We are hoping that the benefits of the new interface will be an incentive to use it in
new netCDF applications. It is possible to convert old applications to the new interface incremen-
tally, replacing netCDF-2 calls with the corresponding netCDF-3 calls one at a time. If you want
to check that only netCDF-3 calls are used in an application, a preprocessor macro
(NO_NETCDF_}is available for that purpose.

Other changes in the implementation of netCDF result in improved portability, maintainability,
and performance on most platforms. A clean separation between 1/0 and type layers facilitates
platform-specific optimizations. The new library no longer uses a vendor-provided XDR library,
which simplifies linking programs that use netCDF and speeds up data access significantly in
most cases.

The New C Interface

First, here's an example of C code that uses the netCDF-2 interface:

void *bufferp;
nc_type xtype;
ncvaring(ncid, varid, ..., &xtype,

/* allocate bufferp based on dimensions and type */

if (ncvarget(ncid, varid, start, count, bufferp) == -1) {
fprintf(stderr, "Can’t get data, error code = %d\n",ncerr);
/* deal with it */

}
switch(xtype) {
/* deal with the data, according to type */

case NC_FLOAT:
fanalyze((float *)bufferp);
break;

case NC_DOUBLE:
danalyze((double *)bufferp);
break;

}

Here’s how you might handle this with the new netCDF-3 C interface:

/*

* | want to use doubles for my analysis.
*/

double dbuf[NDOUBLES];

int status;

/* So, | use the function that gets the data as doubles. */
status = nc_get_vara_double(ncid, varid, start, count, dbuf)
if (status '= NC_NOERR) {
fprintf(stderr, "Can'’t get data: %s\n", nc_strerror(status));
/* deal with it */

}
danalyze(dbuf);

The example above illustrates changes in function names, data type conversion, and error han-
dling, discussed in detail in the sections below.

Function Naming Conventions

The netCDF-3 C library employs a new naming convention, intended to make netCDF programs
more readable. For example, the name of the function to rename a variable is now
nc_rename_var instead of the previougvarrename .

All netCDF-3 C function names begin with the_ prefix. The second part of the name is a verb,

like get , put , ing (for inquire), oropen. The third part of the name is typically the object of the
verb: for examplelim, var , oratt for functions dealing with dimensions, variables, or attributes.

To distinguish the various 1/0O operations for variables, a single character modifier is appended to
var .

* var entire variable access

e wvarl single value access

e vara array or array section access

* vars strided access to a subsample of values

* varm mapped access to values not contiguous in memory

At the end of the name for variable and attribute functions, there is a component indicating the
type of the final argumentext , uchar , schar , short ,int ,long ,float , Ordouble . This part of

the function name indicates the type of the data container you are using in your program: charac-
ter string, unsigned char, signed char, and so on.

Also, all macro names in the public C interface begin with the pmedix For example, the macro
which was formerlywAX_NC_NAMB NnowNC_MAX_NAMENd the formeFILL_FLOAT is now
NC_FILL_FLOAT.

As previously mentioned, all the old names are still supported for backward compatibility.

Type Conversion

With the new interface, users need not be aware of the external type of numeric variables, since
automatic conversion to or from any desired numeric type is now available. You can use this fea-
ture to simplify code, by making it independent of external types. The elimination of void* point-
ers provides detection of type errors at compile time that could not be detected with the previous
interface. Programs may be made more robust with the new interface, because they need not be
changed to accommodate a change to the external type of a variable.

If conversion to or from an external numeric type is necessary, it is handled by the library. This
automatic conversion and separation of external data representation from internal data types will
become even more important in netCDF version 4, when new external types will be added for
packed data for which there is no natural corresponding internal type, for example, arrays of 11-
bit values.

Converting from one numeric type to another may result in an error if the target type is not capa-
ble of representing the converted value. (In netCDF-2, such overflows can only happen in the
XDR layer.) For example, a float may not be able to hold data stored externally@DawBsLE

(an IEEE floating-point number). When accessing an array of valusis, 8RANGError is

returned if one or more values are out of the range of representable values, but other values are
converted properly.

Note that mere loss of precision in type conversion does not return an error. Thus, if you read dou-
ble precision values into an int, for example, no error results unless the magnitude of the double
precision value exceeds the representable range of ints on your platform. Similarly, if you read a
large integer into a float incapable of representing all the bits of the integer in its mantissa, this
loss of precision will not result in an error. If you want to avoid such precision loss, check the
external types of the variables you access to make sure you use an internal type that has a compat-
ible precision.

The new interface distinguishes arrays of characters intended to represent text strings from arrays
of 8-bit bytes intended to represent small integers. The interface supports the internahtypes
uchar , andschar , intended for text strings, unsigned byte values, and signed byte values.

The_uchar and_schar functions were introduced in netCDF-3 to eliminate an ambiguity, and
support both signed and unsigned byte data. In netCDF-2, whether the exteralretype rep-
resented signed or unsigned values was left up to the user. In netcdf-3, wedreatreas signed

for the purposes of conversion to short, int, long, float, or double. (Of course, no conversion takes
place when the internal type is signed char.) In the _uchar functions, waltemtTEas if it were
unsigned. Thus, neC_ERANGEITor can occur converting betweed BYTEand unsigned char.

Error handling

The new interface handles errors differently than netCDF-2. In the old interface, the default
behavior when an error was detected was to print an error message and exit. To get control of error
handling, you had to set flag bits in a global variable, ncopts, and to determine the cause of an
error, you had to test the value of another global varialele .

In the new interface, functions return an integer status that indicates not only success or failure,
but also the cause of the error. The global variables ncerr and ncopt have been eliminated. The
library will never try to print anything, nor will it caléxit (unless you are using the netCDF ver-
sion 2 compatibility functions). You will have to check the function return status and do this your-
self. We eliminated these globals in the interest of supporting parallel (multiprocessor) execution
cleanly, as well as reducing the number of assumptions about the environment where netCDF is
used. The new behavior should provide better support for using netCDF as a hidden layer in appli-
cations that have their own GUI interface.

NC_LONGand NC_INT

Where the netCDF-2 interface uged LONdo identify an external data type corresponding to
32-bit integers, the new interface ues INT instead NC_LONGs defined to have the same value
asNC_INT for backward compatibility, but it should not be used in new code. With new 64-bit
platforms using long for 64-bit integers, we would like to reduce the confusion caused by this
name clash. Note that there is still no netCDF external data type corresponding to 64-bit integers.

What's Missing?

The new C interface omits three “record I/O” functiafsecput , ncrecget , andncrecing
from the netCDF-2 interface, although these functions are still supported via the netCDF-2 com-
patibility interface.

This means you may have to replace one record-oriented call with multiple type-specific calls,
one for each record variable. For example, a single call to ncrecput can always be replaced by
multiple calls to the appropriate_put_var functions, one call for each variable accessed. The

record-oriented functions were omitted, because there is no simple way to provide type-safety and
automatic type conversion for such an interface.

There is no function corresponding to tlegpelen function from the version 2 interface. The
separation of internal and external types and the new type-conversion interfacesctysten
unnecessary. Since users read into and write out of native typeigedhe operator is perfectly
adequate to determine how much space to allocate for a value.

In the previous library, there was no checking that the characters used in the name of a netCDF
object were compatible with CDL restrictions. The ncdump and ncgen utilities that use CDL per-
mit only alphanumeric characters,”“and “ ” in names. Now this restriction is also enforced by

the library for creation of new dimensions, variables, and attributes. Previously existing compo-
nents with less restrictive names will still work OK.

Other Changes

There are two new functions in netCDF-3 that don’t correspond to any netCDF-2 functions:
nc_ing_libvers andnc_strerror . The version of the netCDF library in use is returned as a
string bync_ing_libvers . An error message corresponding to the status returned by a netCDF
function call is returned as a string by thestrerror function.

A newNC_SHARHIlag is available for use in ait_open ornc_create call, to suppress the default
buffering of accesses. The useNaf_SHARHoOr concurrent access to a netCDF dataset means you
don’t have to calhc_sync after every access to make sure that disk updates are synchronous. It is
important to note that changes to ancillary data, such as attribute values, are not propagated auto-
matically by use of th&ic_sHARHlag. Use of thec_sync function is still required for this pur-

pose.

The version 2 interface had a single inquiry functienaring for getting the name, type, and

shape of a variable. Similarly, only a single inquiry function was available for getting information
about a dimension, an attribute, or a netCDF dataset. When you only wanted a subset of this infor-
mation, you had to provide NULL arguments as placeholders for the unneeded information. The
new interface includes additional inquire functions that return each item separately, so errors are
less likely from miscounting arguments.

The previous implementation returned an error when 0-valued count components were specified
in ncvarput andncvarget calls. This restriction has been removed, so that now functions in the
nc_put_var andnc_get var families may be called with 0-valued count components, resulting

in no data being accessed. Although this may seem useless, it simplifies some programs to not
treat 0-valued counts as a special case.

The previous implementation returned an error when the same dimension was used more than
once in specifying the shape of a variable in ncvardef. This restriction is relaxed in the netCDF-3
implementation, because an autocorrelation matrix is a good example where using the same
dimension twice makes sense.

In the new interface, units for theap argument to thec_put_ varm andnc_get_varm families
of functions are now in terms of the number of data elements of the desired internal type, not in
terms of bytes as in the netCDF version-2 mapped access interfaces.

Following is a table of netCDF-2 function names and names of the corresponding netCDF-3 func-
tions. For parameter lists of netCDF-2 functions, see the netCDF-2 User’s Guide.

ncabort nc_abort

ncattcopy nc_copy_att

ncattdel nc_del_att

ncattget nc_get_att_double, nc_get_att float, nc_get_att int, nc_get_att_long,
nc_get_att_schar, nc_get_att short, nc_get_att _text, nc_get_att_uchar

ncatting nc_ing_att, nc_ing_attid, nc_ing_attlen, nc_ing_atttype

ncattname nc_ing_attname

ncattput nc_put_att_double, nc_put_att_float, nc_put_att int, nc_put_att_long,
nc_put_att_schar, nc_put_att _short, nc_put_att_text, nc_put_att_uchar

ncattrename nc_rename_att

ncclose nc_close

nccreate nc_create

ncdimdef nc_def _dim

ncdimid nc_ing_dimid

ncdiming nc_ing_dim, nc_ing_dimlen, nc_ing_dimname

ncdimrename nc_rename_dim

ncendef nc_enddef

ncinquire nc_ing, nc_ing_natts, nc_ing_ndims, nc_ing_nvars, nc_ing_unlimdim
ncopen nc_open

ncrecget (none)

ncrecing (none)

ncrecput (none)

ncredef nc_redef

ncsetfill nc_set _fill

ncsync nc_sync

nctypelen (none)
ncvardef nc_def var

ncvarget nc_get vara_double, nc_get vara float,nc_get vara_int,nc_get vara_long,
nc_get vara_schar, nc_get _vara_short, nc_get_vara_text,
nc_get vara_uchar

ncvargetl nc_get_varl _double, nc_get varl float, nc_get_varl _int,
nc_get varl long, nc_get varl _schar, nc_get varl short,
nc_get varl text, nc_get varl uchar

ncvargetg nc_get_varm_double, nc_get varm_float, nc_get_varm_int,
nc_get varm_long, nc_get varm_schar, nc_get _varm_short,
nc_get_varm_text, nc_get_varm_uchar,
nc_get vars_double, nc_get vars_float, nc_get vars_int, nc_get_vars_long,
nc_get_vars_schar, nc_get_vars_short, nc_get_vars_text, nc_get_vars_uchar

ncvarid nc_ing_varid

ncvaring nc_ing_var, nc_ing_vardimid, nc_ing_varname, nc_ing_varnatts,
nc_ing_varndims, nc_ing_vartype

ncvarput nc_put_vara_double, nc_put_vara_float, nc_put_vara_int,
nc_put_vara_long, nc_put_vara_schar, nc_put_vara_short,
nc_put_vara_text, nc_put_vara_uchar

ncvarputl nc_put_varl double, nc_put varl float, nc_put_varl _int,
nc_put_varl long, nc_put varl schar, nc_put varl short,
nc_put_varl_text, nc_put_varl_uchar

ncvarputg nc_put_varm_double, nc_put varm_float, nc_put_varm_int,
nc_put_varm_long, nc_put_varm_schar, nc_put_varm_short,
nc_put_varm_text, nc_put_varm_uchar,
nc_put_vars_double, nc_put vars_float, nc_put_vars_int, nc_put_vars_long,
nc_put_vars_schar, nc_put_vars_short, nc_put_vars_text,
nc_put_vars_uchar

ncvarrename nc_rename_var
(none) nc_ing_libvers

(none) nc_strerror

	1.2 NetCDF Is Not a Database Management System
	1.3 File Format
	1.4 What about Performance?
	1.5 Is NetCDF a Good Archive Format?
	1.6 Creating Self-Describing Data conforming to Conventions
	1.7 Background and Evolution of the NetCDF Interface
	1.8 What’s New Since the Previous Release?
	1.9 Limitations of NetCDF
	1.10 Future Plans for NetCDF
	2.1.2 network Common Data Form Language (CDL)

	2.2 Dimensions
	2.3 Variables
	2.3.1 Coordinate Variables

	2.4 Attributes
	2.5 Differences between Attributes and Variables
	3.2 Data Access
	3.2.2 An Example of Array-Section Access
	3.2.3 More on General Array Section Access

	3.3 Type Conversion
	3.4 Data Structures
	4.2 Reading a NetCDF Dataset with Known Names
	4.3 Reading a netCDF Dataset with Unknown Names
	4.4 Adding New Dimensions, Variables, Attributes
	4.5 Error Handling
	4.6 Compiling and Linking with the NetCDF Library
	5.2 Get error message corresponding to error status: nc_strerror
	5.3 Get netCDF library version: nc_inq_libvers
	5.4 Create a NetCDF dataset: nc_create
	5.5 Open a NetCDF Dataset for Access: nc_open
	5.6 Put Open NetCDF Dataset into Define Mode: nc_redef
	5.7 Leave Define Mode: nc_enddef
	5.8 Close an Open NetCDF Dataset: nc_close
	5.9 Inquire about an Open NetCDF Dataset: nc_inq Family
	5.10 Synchronize an Open NetCDF Dataset to Disk: nc_sync
	5.11 Back Out of Recent Definitions: nc_abort
	5.12 Set Fill Mode for Writes: nc_set_fill
	6.2 Get a Dimension ID from Its Name: nc_inq_dimid
	6.3 Inquire about a Dimension: nc_inq_dim Family
	6.4 Rename a Dimension: nc_rename_dim
	7.2 Create a Variable: nc_def_var
	7.3 Get a Variable ID from Its Name: nc_inq_varid
	7.4 Get Information about a Variable from Its ID: nc_inq_var family
	7.5 Write a Single Data Value: nc_put_var1_�type
	7.6 Write an Entire Variable: nc_put_var_�type
	7.7 Write an Array of Values: nc_put_vara_�type
	7.8 Write a Subsampled Array of Values: nc_put_vars_�type
	7.9 Write a Mapped Array of Values: nc_put_varm_�type
	7.10 Read a Single Data Value: nc_get_var1_�type
	7.11 Read an Entire Variable nc_get_var_�type
	7.12 Read an Array of Values: nc_get_vara_�type
	7.13 Read a Subsampled Array of Values: nc_get_vars_�type
	7.14 Read a Mapped Array of Values: nc_get_varm_�type
	7.15 Reading and Writing Character String Values
	7.16 Fill Values
	7.17 Rename a Variable: nc_rename_var
	8.2 Create an Attribute: nc_put_att_�type
	8.3 Get Information about an Attribute: nc_inq_att Family
	8.4 Get Attribute’s Values:nc_get_att_�type
	8.5 Copy Attribute from One NetCDF to Another: nc_copy_att
	8.6 Rename an Attribute: nc_rename_att
	8.7 Delete an Attribute: nc_del_att
	9.2 The Extended XDR Layer
	9.3 The I/O Layer
	9.4 UNICOS Optimization
	10.2 CDL Data Types
	10.3 CDL Notation for Data Constants
	10.4 ncgen
	10.5 ncdump

