
ta

s

NetCDF User’s Guide for C

An Access Interface for Self-Describing, Portable Da
Version 3

June 1997

Russ Rew, Glenn Davis, Steve Emmerson, and Harvey Davie
Unidata Program Center

the
compa-
is-
e

lu-
ot nec-

dorse-
this
Copyright © 1997 University Corporation for Atmospheric Research, Boulder, Colorado.

Permission is granted to make and distribute verbatim copies of this manual provided that
copyright notice and these paragraphs are preserved on all copies. The software and any ac
nying written materials are provided “as is” without warranty of any kind. UCAR expressly d
claims all warranties of any kind, either expressed or implied, including but not limited to th
implied warranties of merchantability and fitness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation. Any opinions, findings, conc
sions, or recommendations expressed in this publication are those of the author(s) and do n
essarily reflect the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an en
ment by the Unidata Program Center. Unidata does not authorize any use of information from
publication for advertising or publicity purposes.

m
to
 For ana-
orted

, Pur-
vel-
ciple
ts dic-
 is a

ese
ularly-

ther
lf-
ional,
d each
t. The
ays,
lso
is use-

anned

ntly,

idata

that
n be
e self-

DF
uitable
Foreword
Unidata (http://www.unidata.ucar.edu) is a National Science Foundation-sponsored progra
empowering U.S. universities, through innovative applications of computers and networks,
make the best use of atmospheric and related data for enhancing education and research.
lyzing and displaying such data, the Unidata Program Center offers universities several supp
software packages developed by other organizations, including the University of Wisconsin
due University, NASA, and the National Weather Service. Underlying these is a Unidata-de
oped system for acquiring and managing data in real time, making practical the Unidata prin
that each university should acquire and manage its own data holdings as local requiremen
tate. It is significant that the Unidata program has no data center—the management of data
“distributed” function.

The Network Common Data Form (netCDF) software described in this guide was originally
intended to provide a common data access method for the various Unidata applications. Th
deal with a variety of data types that encompass single-point observations, time series, reg
spaced grids, and satellite or radar images.

The netCDF software functions as an I/O library, callable from C, FORTRAN, C++, Perl, or o
language for which a netCDF library is available. The library stores and retrieves data in se
describing, machine-independent datasets. Each netCDF dataset can contain multidimens
named variables (with differing types that include integers, reals, characters, bytes, etc.), an
variable may be accompanied by ancillary data, such as units of measure or descriptive tex
interface includes a method for appending data to existing netCDF datasets in prescribed w
functionality that is not unlike a (fixed length) record structure. However, the netCDF library a
allows direct-access storage and retrieval of data by variable name and index and therefore
ful only for disk-resident (or memory-resident) datasets.

NetCDF access has been implemented in about half of Unidata’s software, so far, and it is pl
that such commonality will extend across all Unidata applications in order to:

• Facilitate the use of common datasets by distinct applications.
• Permit datasets to be transported between or shared by dissimilar computers transpare

i.e., without translation.
• Reduce the programming effort usually spent interpreting formats.
• Reduce errors arising from misinterpreting data and ancillary data.
• Facilitate using output from one application as input to another.
• Establish an interface standard which simplifies the inclusion of new software into the Un

system.

 A measure of success has been achieved. NetCDF is now in use on computing platforms
range from CRAYs to personal computers and include most UNIX-based workstations. It ca
used to create a complex dataset on one computer (say in FORTRAN) and retrieve that sam
describing dataset on another computer (say in C) without intermediate translations—netC
datasets can be transferred across a network, or they can be accessed remotely using a s
network file system.

ata’s
idata
ns,
en well
 sub-
etCDF

rt under-
the

 as a
A

ni-
, is
and
data’s
 neces-

 as
Because we believe that the use of netCDF access in non-Unidata software will benefit Unid
primary constituency—such use may result in more options for analyzing and displaying Un
information—the netCDF library is distributed without licensing or other significant restrictio
and current versions can be obtained via anonymous FTP. Apparently the software has be
received by a wide range of institutions beyond the atmospheric science community, and a
stantial number of public domain and commercial data analysis systems can now accept n
datasets as input.

Several organizations have adopted netCDF as a data access standard, and there is an effo
way at the National Center for Supercomputer Applications (NCSA, which is associated with
University of Illinois at Urbana-Champaign) to support the netCDF programming interfaces
means to store and retrieve data in “HDF files,” i.e., in the format used by the popular NCS
tools. We have encouraged and cooperated with these efforts.

Questions occasionally arise about the level of support provided for the netCDF software. U
data’s formal position, stated in the copyright notice which accompanies the netCDF library
that the software is provided “as is”. In practice, the software is updated from time to time,
Unidata intends to continue making improvements for the foreseeable future. Because Uni
mission is to serve geoscientists at U.S. universities, problems reported by that community
sarily receive the greatest attention.

We hope the reader will find the software useful and will give us feedback on its application
well as suggestions for its improvement.

David Fulker

Unidata Program Center Director

University Corporation for Atmospheric Research

te,
escrib-
s that
rent
e for

 data

ese

unity
s for
avail-
ata use-

parate

the
sive
Summary
The purpose of the Network Common Data Form (netCDF) interface is to allow you to crea
access, and share array-oriented data in a form that is self-describing and portable. “Self-d
ing” means that a dataset includes information defining the data it contains. “Portable” mean
the data in a dataset is represented in a form that can be accessed by computers with diffe
ways of storing integers, characters, and floating-point numbers. Using the netCDF interfac
creating new datasets makes the data portable. Using the netCDF interface in software for
access, management, analysis, and display can make the software more generally useful.

The netCDF software includes C and FORTRAN interfaces for accessing netCDF data. Th
libraries are available for many common computing platforms.

C++ and Perl interfaces for netCDF data access are also available from Unidata. The comm
of netCDF users has contributed ports of the software to additional platforms and interface
other programming languages as well. Source code for netCDF software libraries is freely
able to encourage the sharing of both array-oriented data and the software that makes the d
ful.

This User’s Guide presents the netCDF data model, but documents only the C interface. Se
documents are available for the other language interfaces; also seethe netCDF World Wide Web

site , http://www.unidata.ucar.edu/packages/netcdf/ for links to on-line versions of the
C, FORTRAN, C++ and Perl documentation. Reference documentation for UNIX systems, in
form of UNIX ‘man’ pages for the C and FORTRAN interfaces is also available there. Exten
additional information about netCDF, including pointers to other software that works with
netCDF data, is available from the netCDF World Wide Web site.

tions
,

rtable
rectly,
h as
s can
 data.
ved

s
e inter-
t how
resen-
e writ-

NIX
s, with

 netCDF

ational
erface.

sional
e useful
ional
a to

for-
glo-

e and
1 Introduction

1.1 The NetCDF Interface

The Network Common Data Form, or netCDF, is an interface to a library of data access func
for storing and retrieving data in the form of arrays. Anarray is an n-dimensional (where n is 0, 1
2, …) rectangular structure containing items which all have the samedata type(e.g., 8-bit charac-
ter, 32-bit integer). Ascalar (simple single value) is a 0-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-describing, po
objects that can be accessed through a simple interface. Array values may be accessed di
without knowing details of how the data are stored. Auxiliary information about the data, suc
what units are used, may be stored with the data. Generic utilities and application program
access netCDF datasets and transform, combine, analyze, or display specified fields of the
The development of such applications may lead to improved accessibility of data and impro
reusability of software for array-oriented data management, analysis, and display.

The netCDF software implements anabstract data type, which means that all operations to acces
and manipulate data in a netCDF dataset must use only the set of functions provided by th
face. The representation of the data is hidden from applications that use the interface, so tha
the data are stored could be changed without affecting existing programs. The physical rep
tation of netCDF data is designed to be independent of the computer on which the data wer
ten.

Unidata supports the netCDF interfaces for C, FORTRAN, C++, and Perl and for various U
operating systems. The software is also ported and tested on a few other operating system
assistance from users with access to these systems, before each major release. Unidata’s
software is freely available via FTP to encourage its widespread use.

1.2 NetCDF Is Not a Database Management System

Why not use an existing database management system for storing array-oriented data? Rel
database software is not suitable for the kinds of data access supported by the netCDF int

First, existing database systems that support the relational model do not support multidimen
objects (arrays) as a basic unit of data access. Representing arrays as relations makes som
kinds of data access awkward and provides little support for the abstractions of multidimens
data and coordinate systems. A quite different data model is needed for array-oriented dat
facilitate its retrieval, modification, mathematical manipulation and visualization.

Related to this is a second problem with general-purpose database systems: their poor per
mance on large arrays. Collections of satellite images, scientific model outputs and long-term
bal weather observations are beyond the capabilities of most database systems to organiz
index for efficient retrieval.

urces
and dis-
tting,
pplica-

s of an

on
ented

coded
esen-

Per-

1.
t low-
rob-

To sup-
 more
, or

luding
enta-
par-

nal

nting
xam-
ow to
ce,”
Finally, general-purpose database systems provide, at significant cost in terms of both reso
and access performance, many facilities that are not needed in the analysis, management,
play of array-oriented data. For example, elaborate update facilities, audit trails, report forma
and mechanisms designed for transaction-processing are unnecessary for most scientific a
tions.

1.3 File Format

To achieve network-transparency (machine-independence), netCDF is implemented in term
external representation much like XDR (eXternal Data Representation, seeftp://ds.inter-

nic.net/rfc/rfc1832.txt), a standard for describing and encoding data. This representati
provides encoding of data into machine-independent sequences of bits. It has been implem
on a wide variety of computers, by assuming only that eight-bit bytes can be encoded and de
in a consistent way. The IEEE 754 floating-point standard is used for floating-point data repr
tation.

The overall structure of netCDF files is described in Chapter 9 “NetCDF File Structure and
formance,” page 131.

The details of the format are described in Appendix B “File Format Specification,” page 15
However, users are discouraged from using the format specification to develop independen
level software for reading and writing netCDF files, because this could lead to compatibility p
lems if the format is ever modified.

1.4 What about Performance?

One of the goals of netCDF is to support efficient access to small subsets of large datasets.
port this goal, netCDF uses direct access rather than sequential access. This can be much
efficient when the order in which data is read is different from the order in which it was written
when it must be read in different orders for different applications.

The amount of overhead for a portable external representation depends on many factors, inc
the data type, the type of computer, the granularity of data access, and how well the implem
tion has been tuned to the computer on which it is run. This overhead is typically small in com
ison to the overall resources used by an application. In any case, the overhead of the exter
representation layer is usually a reasonable price to pay for portable data access.

Although efficiency of data access has been an important concern in designing and impleme
netCDF, it is still possible to use the netCDF interface to access data in inefficient ways: for e
ple, by requesting a slice of data that requires a single value from each record. Advice on h
use the interface efficiently is provided in Chapter 9 “NetCDF File Structure and Performan
page 131.

of data
tion

DF
more

tics of

both
 con-
les

nt
109,

neric

ata.
d from

d for
rest

ds: to
ta.
m
 that
 with
hich
nd

ugh,
e Sci-
Data
1.5 Is NetCDF a Good Archive Format?

NetCDF can be used as a general-purpose archive format for storing arrays. Compression
is possible with netCDF (e.g., using arrays of eight-bit or 16-bit integers to encode low-resolu
floating-point numbers instead of arrays of 32-bit numbers), but the current version of netC
was not designed to achieve optimal compression of data. Hence, using netCDF may require
space than special-purpose archive formats that exploit knowledge of particular characteris
specific datasets.

1.6 Creating Self-Describing Data conforming to Conventions

The mere use of netCDF is not sufficient to make data “self-describing” and meaningful to
humans and machines. The names of variables and dimensions should be meaningful and
form to any relevant conventions. Dimensions should have corresponding coordinate variab
where sensible.

Attributes play a vital role in providing ancillary information. It is important to use all the releva
standard attributes using the relevant conventions. Section 8.1 “Attribute Conventions,” page
describes reserved attributes (used by the netCDF library) and attribute conventions for ge
application software.

A number of groups have defined their own additional conventions and styles for netCDF d
Descriptions of these conventions, as well as examples incorporating them can be accesse
the netCDF Conventions site,http://www.unidata.ucar.edu/packages/netcdf/conven-

tions.html .

These conventions should be used where suitable. Additional conventions are often neede
local use. These should be contributed to the above netCDF conventions site if likely to inte
other users in similar areas.

1.7 Background and Evolution of the NetCDF Interface

The development of the netCDF interface began with a modest goal related to Unidata’s nee
provide a common interface between Unidata applications and real-time meteorological da
Since Unidata software was intended to run on multiple hardware platforms with access fro
both C and FORTRAN, achieving Unidata’s goals had the potential for providing a package
was useful in a broader context. By making the package widely available and collaborating
other organizations with similar needs, we hoped to improve the then current situation in w
software for scientific data access was only rarely reused by others in the same discipline a
almost never reused between disciplines (Fulker, 1988).

Important concepts employed in the netCDF software originated in a paper (Treinish and Go
1987) that described data-access software developed at the NASA Goddard National Spac
ence Data Center (NSSDC). The interface provided by this software was called the Common
Format (CDF). The NASA CDF was originally developed as a platform-specific FORTRAN

llec-

eric

sibil-
ce,
lity

evel-
 array-
d dis-
 to C-
ond,
ables

s lay-
DF
ple-
mall,
ot
ver-

n
ed a
,
elated
ultidi-
 of stor-

enti-
mall
ttend-

ft-

ensus
nt
ation
rst
g

library to support an abstraction for storing arrays.

The NASA CDF package had been used for many different kinds of data in an extensive co
tion of applications. It had the virtues of simplicity (only 13 subroutines), independence from
storage format, generality, ability to support logical user views of data, and support for gen
applications.

Unidata held a workshop on CDF in Boulder in August 1987. We proposed exploring the pos
ity of collaborating with NASA to extend the CDF FORTRAN interface, to define a C interfa
and to permit the access of data aggregates with a single call, while maintaining compatibi
with the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had d
oped a package of C software for UNIX that supported sequential access to self-describing
oriented data and a “pipes and filters” (or “data flow”) approach to processing, analyzing, an
playing the data. This package also used the “Common Data Format” name, later changed
Based Analysis and Display System (CANDIS). Unidata learned of Raymond’s work (Raym
1988), and incorporated some of his ideas, such as the use of named dimensions and vari
with differing shapes in a single data object, into the Unidata netCDF interface.

In early 1988, Glenn Davis of Unidata developed a prototype netCDF package in C that wa
ered on XDR. This prototype proved that a single-file, XDR-based implementation of the C
interface could be achieved at acceptable cost and that the resulting programs could be im
mented on both UNIX and VMS systems. However, it also demonstrated that providing a s
portable, and NASA CDF-compatible FORTRAN interface with the desired generality was n
practical. NASA’s CDF and Unidata’s netCDF have since evolved separately, but recent CDF
sions share many characteristics with netCDF.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development firm in Sa
Diego, California), a participant in the 1987 Unidata CDF workshop, independently develop
CDF package in C that extended the NASA CDF interface in several important ways (Fahle
1989). Like Raymond’s package, the SeaSpace CDF software permitted variables with unr
shapes to be included in the same data object and permitted a general form of access to m
mensional arrays. Fahle’s implementation was used at SeaSpace as the intermediate form
age for a variety of steps in their image-processing system. This interface and format have
subsequently evolved into the Terascan data format.

After studying Fahle’s interface, we concluded that it solved many of the problems we had id
fied in trying to stretch the NASA interface to our purposes. In August 1988, we convened a s
workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues. A
ing were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDF so
ware), Angel Li of the University of Miami (who had implemented our prototype netCDF
software on VMS and was a potential user), and Unidata systems development staff. Cons
was reached at the workshop after some further simplifications were discovered. A docume
incorporating the results of the workshop into a proposed Unidata netCDF interface specific
was distributed widely for comments before Glenn Davis and Russ Rew implemented the fi
version of the software. Comparison with other data-access interfaces and experience usin

ell

difica-

g
ssoci-

le call
a, sub-
g
ental

 C++

de
ting
I data
 on

le for-

ier

rd

 of
e
-offs
ns in
netCDF are discussed in Rew and Davis (1990a), Rew and Davis (1990b), Jenter and Sign
(1992), and Brown, Folk, Goucher, and Rew (1993).

In October 1991, we announced version 2.0 of the netCDF software distribution. Slight mo
tions to the C interface (declaring dimension lengths to belong rather thanint) improved the
usability of netCDF on inexpensive platforms such as MS-DOS computers, without requirin
recompilation on other platforms. This change to the interface required no changes to the a
ated file format.

Release of netCDF version 2.3 in June 1993 preserved the same file format but added sing
access to records, optimizations for accessing cross-sections involving non-contiguous dat
sampling along specified dimensions (using ‘strides’), accessing non-contiguous data (usin
‘mapped array sections’), improvements to the ncdump and ncgen utilities, and an experim
C++ interface.

In version 2.4, released in February 1996, support was added for new platforms and for the
interface, and significant optimizations were implemented for supercomputer architectures.

FAN (File Array Notation), software providing a high-level interface to netCDF data, was ma
available in May 1996. The capabilities of the FAN utilities include extracting and manipula
array data from netCDF datasets, printing selected data from netCDF arrays, copying ASCI
into netCDF arrays, and performing various operations (sum, mean, max, min, product,…)
netCDF arrays. More information about FAN is available from the FAN Utilities document,
http://www.unidata.ucar.edu/packages/netcdf/fan_utils.html .

1.8 What’s New Since the Previous Release?

This Guide documents the January 1997 release of netCDF 3, which preserves the same fi
mat as earlier versions but includes some major changes from version 2.4:

• complete rewrite of the netCDF library in ANSI C;
• new type-safe C and FORTRAN interfaces;
• automatic type conversion facilities;
• significant changes in the internal architecture, resulting in higher performance and eas

optimization on new platforms;
• support for all netCDF 2 function interfaces, globals variables, and behavior, for backwa

compatibility;
• revised documentation; and fixes for reported bugs.

1.9 Limitations of NetCDF

The netCDF data model is widely applicable to data that can be organized into a collection
named array variables with named attributes, but there are some important limitations to th
model and its implementation in software. Some of these limitations are inherent in the trade
among conflicting requirements that netCDF embodies, but we plan to address other limitatio

ers,
ntly
6-bit

ngle
ns

 per-
then
al
the
ays) can-

rmits
orm
ta set;
(for
rids or

essary
mple,
cing
e-off
ds of

cipline

ays, or
read

 repre-
lf-

r and
rt for
the next version of the software.

Currently, netCDF offers a limited number of external numeric data types: 8-, 16-, 32-bit integ
or 32- or 64-bit floating-point numbers. This limited set of sizes may use file space inefficie
compared to packing data in bit fields. For example, arrays of 9-bit values must be stored in 1
short integers. Storing arrays of 1- or 2-bit values in 8-bit values is even less optimal.

With the current netCDF file format, no more than 2 gigabytes of data can be stored in a si
netCDF dataset. This limitation is a result of 32-bit offsets currently used for storing positio
within a file.

Another limitation of the current model is that only one unlimited (changeable) dimension is
mitted for each netCDF data set. Multiple variables can share an unlimited dimension, but
they must all grow together. Hence the netCDF model does not permit variables with sever
unlimited dimensions or the use of multiple unlimited dimensions in different variables within
same dataset. Hence variables that have non-rectangular shapes (for example, ragged arr
not be represented conveniently.

The extent to which data can be completely self-describing is limited: there is always some
assumed context without which sharing and archiving data would be impractical. NetCDF pe
storing meaningful names for variables, dimensions, and attributes; units of measure in a f
that can be used in computations; text strings for attribute values that apply to an entire da
and simple kinds of coordinate system information. But for more complex kinds of metadata
example, the information necessary to provide accurate georeferencing of data on unusual g
from satellite images), it is often necessary to develop conventions.

Specific additions to the netCDF data model might make some of these conventions unnec
or allow some forms of metadata to be represented in a uniform and compact way. For exa
adding explicit georeferencing to the netCDF data model would simplify elaborate georeferen
conventions at the cost of complicating the model. The problem is finding an appropriate trad
between the richness of the model and its generality (i.e., its ability to encompass many kin
data). A data model tailored to capture the shared context among researchers within one dis
may not be appropriate for sharing or combining data from multiple disciplines.

The netCDF data model does not support nested data structures such as trees, nested arr
other recursive structures, primarily because the current FORTRAN interface must be able to
and write any netCDF data set. Through use of indirection and conventions it is possible to
sent some kinds of nested structures, but the result may fall short of the netCDF goal of se
describing data.

Finally, the current implementation limits concurrent access to a netCDF dataset. One write
multiple readers may access data in a single dataset simultaneously, but there is no suppo
multiple concurrent writers.

ability
if practi-
(e.g.,

 nested
, and

an-

e
.

ble’

ogra-

rid-

logy,
-

lans,”
 for

ent
1.10 Future Plans for NetCDF

Currentplans are to add transparent data packing, improved concurrency support, and the
to access datasets larger than 2 Gigabytes. Other desirable extensions that may be added,
cal, include access to data by key or coordinate value, support for efficient structure changes
new variables and attributes), support for pointers to data cross-sections in other datasets,
arrays (allowing representation of ragged arrays, trees and other recursive data structures)
multiple unlimited dimensions.

References

1. Brown, S. A, M. Folk, G. Goucher, and R. Rew, “Software for Portable Scientific Data M
agement,”Computers in Physics, American Institute of Physics, Vol. 7, No. 3, May/June
1993.

2. Davies, H. L., “FAN - An array-oriented query language,” Second Workshop on Databas
Issues for Data Visualization (Visualization 1995), Atlanta, Georgia, IEEE, October 1995

3. Fahle, J.,TeraScan Applications Programming Interface, SeaSpace, San Diego, California,
1989.

4. Fulker, D. W., “The netCDF: Self-Describing, Portable Files---a Basis for ‘Plug-Compati
Software Modules Connectable by Networks,”ICSU Workshop on Geophysical Informatics,
Moscow, USSR, August 1988.

5. Fulker, D. W., “Unidata Strawman for Storing Earth-Referencing Data,”Seventh International
Conference on Interactive Information and Processing Systems for Meteorology, Ocean
phy, and Hydrology, New Orleans, La., American Meteorology Society, January 1991.

6. Gough, M. L.,NSSDC CDF Implementer’s Guide (DEC VAX/VMS) Version 1.1, National
Space Science Data Center, 88-17, NASA/Goddard Space Flight Center, 1988.

7. Jenter, H. L. and R. P. Signell, “NetCDF: A Freely-Available Software-Solution to Data-
Access Problems for Numerical Modelers,”Proceedings of the American Society of Civil
Engineers Conference on Estuarine and Coastal Modeling, Tampa, Florida, 1992.

8. Raymond, D. J., “A C Language-Based Modular System for Analyzing and Displaying G
ded Numerical Data,”Journal of Atmospheric and Oceanic Technology, 5, 501-511, 1988.

9. Rew, R. K. and G. P. Davis, “The Unidata netCDF: Software for Scientific Data Access,”Sixth
International Conference on Interactive Information and Processing Systems for Meteoro
Oceanography, and Hydrology, Anaheim, California, American Meteorology Society, Febru
ary 1990.

10. Rew, R. K. and G. P. Davis, “NetCDF: An Interface for Scientific Data Access,”Computer
Graphics and Applications, IEEE, pp. 76-82, July 1990.

11. Rew, R. K. and G. P. Davis, “Unidata’s netCDF Interface for Data Access: Status and P
Thirteenth International Conference on Interactive Information and Processing Systems
Meteorology, Oceanography, and Hydrology, Anaheim, California, American Meteorology
Society, February 1997.

12. Treinish, L. A. and M. L. Gough, “A Software Package for the Data Independent Managem
of Multi-Dimensional Data,”EOS Transactions, American Geophysical Union,68, 633-635,
1987.

re the
 library
 num-

ank
a disk
nce,
ast and

umeric

cant in

his
tCDF

t way
ori-
2 Components of a NetCDF Dataset

2.1 The NetCDF Data Model

A netCDF dataset containsdimensions, variables, andattributes, which all have both a name and
an ID number by which they are identified. These components can be used together to captu
meaning of data and relations among data fields in an array-oriented dataset. The netCDF
allows simultaneous access to multiple netCDF datasets which are identified by dataset ID
bers, in addition to ordinary file names.

A netCDF dataset contains a symbol table for variables containing their name, data type, r
(number of dimensions), dimensions, and starting disk address. Each element is stored at
address which is a linear function of the array indices (subscripts) by which it is identified. He
these indices need not be stored separately (as in a relational database). This provides a f
compact storage method.

2.1.1 Naming Conventions

The names of dimensions, variables and attributes consist of arbitrary sequences of alphan
characters (as well as underscore ‘_’ and hyphen ‘- ’), beginning with a letter or underscore.
(However names commencing with underscore are reserved for system use.) Case is signifi
netCDF names.

2.1.2 network Common Data Form Language (CDL)

We will use a small netCDF example to illustrate the concepts of the netCDF data model. T
includes dimensions, variables, and attributes. The notation used to describe this simple ne
object is called CDL (network Common Data form Language), which provides a convenien
of describing netCDF datasets. The netCDF system includes utilities for producing human-
ented CDL text files from binary netCDF datasets and vice versa.

netcdf example_1 { // example of CDL notation for a netCDF dataset

dimensions: // dimension names and lengths are declared first
 lat = 5, lon = 10, level = 4, time = unlimited;

variables: // variable types, names, shapes, attributes
 float temp(time,level,lat,lon);
 temp:long_name = "temperature";
 temp:units = "celsius";
 float rh(time,lat,lon);
 rh:long_name = "relative humidity";
 rh:valid_range = 0.0, 1.0; // min and max
 int lat(lat), lon(lon), level(level);
 lat:units = "degrees_north";
 lon:units = "degrees_east";

ded to

e
inated

n CDL

e, lon-
on or
 level:units = "millibars";
 short time(time);
 time:units = "hours since 1996-1-1";
 // global attributes
 :source = "Fictional Model Output";

data: // optional data assignments
 level = 1000, 850, 700, 500;
 lat = 20, 30, 40, 50, 60;
 lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
 time = 12;
 rh =.5,.2,.4,.2,.3,.2,.4,.5,.6,.7,
 .1,.3,.1,.1,.1,.1,.5,.7,.8,.8,
 .1,.2,.2,.2,.2,.5,.7,.8,.9,.9,
 .1,.2,.3,.3,.3,.3,.7,.8,.9,.9,
 0,.1,.2,.4,.4,.4,.4,.7,.9,.9;
}

The CDL notation for a netCDF dataset can be generated automatically by usingncdump, a utility
program described later (see Section 10.5 “ncdump,” page 140). Another netCDF utility,ncgen ,
generates a netCDF dataset (or optionally C or FORTRAN source code containing calls nee
produce a netCDF dataset) from CDL input (see Section 10.4 “ncgen ,” page 139).

The CDL notation is simple and largely self-explanatory. It will be explained more fully as w
describe the components of a netCDF dataset. For now, note that CDL statements are term
by a semicolon. Spaces, tabs, and newlines can be used freely for readability. Comments i
follow the characters ‘// ’ on any line. A CDL description of a netCDF dataset takes the form

 netCDF name {
 dimensions: …
 variables: …
 data: …
 }

where thenameis used only as a default in constructing file names by thencgen utility. The CDL
description consists of three optional parts, introduced by the keywordsdimensions , variables ,
anddata . NetCDF dimension declarations appear after thedimensions keyword, netCDF vari-
ables and attributes are defined after thevariables keyword, and variable data assignments
appear after thedata keyword.

2.2 Dimensions

A dimension may be used to represent a real physical dimension, for example, time, latitud
gitude, or height. A dimension might also be used to index other quantities, for example stati
model-run-number.

A netCDF dimension has both aname and alength. A dimension length is an arbitrary positive
integer, except that one dimension in a netCDF dataset can have the lengthUNLIMITED.

dex
t most
that
ion
y dec-

s.

r of

t this

stru-
e a

as a
ble is
hanged

F

Such a dimension is called theunlimited dimension or therecord dimension. A variable with an
unlimited dimension can grow to any length along that dimension. The unlimited dimension in
is like a record number in conventional record-oriented files. A netCDF dataset can have a
one unlimited dimension, but need not have any. If a variable has an unlimited dimension,
dimension must be the most significant (slowest changing) one. Thus any unlimited dimens
must be the first dimension in a CDL shape and the first dimension in corresponding C arra
larations.

CDL dimension declarations may appear on one or more lines following the CDL keyword
dimensions . Multiple dimension declarations on the same line may be separated by comma
Each declaration is of the formname = length.

There are four dimensions in the above example:lat , lon , level , andtime . The first three are
assigned fixed lengths;time is assigned the lengthUNLIMITED, which means it is theunlimited
dimension.

The basic unit of named data in a netCDF dataset is avariable. When a variable is defined, its
shape is specified as a list of dimensions. These dimensions must already exist. The numbe
dimensions is called therank (a.k.a.dimensionality). A scalar variable has rank 0, a vector has
rank 1 and a matrix has rank 2.

It is possible to use the same dimension more than once in specifying a variable shape (bu
was not possible in previous netCDF versions). For example,correlation(instrument,

instrument) could be a matrix giving correlations between measurements using different in
ments. But data whose dimensions correspond to those of physical space/time should hav
shape comprising different dimensions, even if some of these have the same length.

2.3 Variables

Variables are used to store the bulk of the data in a netCDF dataset. Avariablerepresents an array
of values of the same type. A scalar value is treated as a 0-dimensional array. A variable h
name, a data type, and a shape described by its list of dimensions specified when the varia
created. A variable may also have associated attributes, which may be added, deleted or c
after the variable is created.

A variable external data type is one of a small set of netCDFtypesthat have the namesNC_BYTE,

NC_CHAR,NC_SHORT, NC_INT,NC_FLOAT, andNC_DOUBLE in the C interface.NC_LONG is a depre-
cated synonym forNC_INT in the C interface.

In the CDL notation, these types are given the simpler namesbyte , char , short , int , float , and
double . real may be used as a synonym forfloat in the CDL notation.long is a deprecated
synonym forint . The exact meaning of each of the types is discussed in Section 3.1 “netCD
external data types,” page 15.

CDL variable declarations appear after thevariable keyword in a CDL unit. They have the form

type variable_name (dim_name_1, dim_name_2, …);

ordi-

sion

gths.
 the
The

ecial
e

he

sitions
d 500

ariable

nd
 that
mono-
for variables with dimensions, or

type variable_name;

for scalar variables.

In the above CDL example there are six variables. As discussed below, four of these are co
nate variables. The remaining variables (sometimes calledprimary variables), temp andrh , con-
tain what is usually thought of as the data. Each of these variables has the unlimited dimen
time as its first dimension, so they are calledrecord variables. A variable that is not a record
variable has a fixed length (number of data values) given by the product of its dimension len
The length of a record variable is also the product of its dimension lengths, but in this case
product is variable because it involves the length of the unlimited dimension, which can vary.
length of the unlimited dimension is the number of records.

2.3.1 Coordinate Variables

It is legal for a variable to have the same name as a dimension. Such variables have no sp
meaning to the netCDF library. However there is a convention that such variables should b
treated in a special way by software using this library.

A variable with the same name as a dimension is called acoordinate variable. It typically defines
a physical coordinate corresponding to that dimension. The above CDL example includes t
coordinate variableslat , lon , level andtime , defined as follows:

 int lat(lat), lon(lon), level(level);
 short time(time);
…
data:
 level = 1000, 850, 700, 500;
 lat = 20, 30, 40, 50, 60;
 lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;
 time = 12;

These define the latitudes, longitudes, barometric pressures and times corresponding to po
along these dimensions. Thus there is data at altitudes corresponding to 1000, 850, 700 an
millibars; and at latitudes 20, 30, 40, 50 and 60 degrees north. Note that each coordinate v
is a vector and has a shape consisting of just the dimension with the same name.

A position along a dimension can be specified using anindex. This is an integer with a minimum
value of 0 for C programs. Thus the 700 millibar level would have an index value of 2 in the
example above.

If a dimension has a corresponding coordinate variable, then this provides an alternative, a
often more convenient, means of specifying position along it. Current application packages
make use of coordinate variables commonly assume they are numeric vectors and strictly
tonic (all values are different and either increasing or decreasing).

ase
y the

a spe-

e, a
values

mean-

ibutes
e for

eir
ides no

L;
of the
 later

”

r

2.4 Attributes

NetCDFattributes are used to store data about the data (ancillary data or metadata), similar in
many ways to the information stored in data dictionaries and schema in conventional datab
systems. Most attributes provide information about a specific variable. These are identified b
name (or ID) of that variable, together with the name of the attribute.

Some attributes provide information about the dataset as a whole and are calledglobal attributes.
These are identified by the attribute name together with a blank variable name (in CDL) or
cial null “global variable” ID (in C or Fortran).

An attribute has an associated variable (the null “global variable” for a global attribute), a nam
data type, a length, and a value. The current version treats all attributes as vectors; scalar
are treated as single-element vectors.

Conventional attribute names should be used where applicable. New names should be as
ingful as possible.

The external type of an attribute is specified when it is created. The types permitted for attr
are the same as the netCDF external data types for variables. Attributes with the same nam
different variables should sometimes be of different types. For example, the attributevalid_max

specifying the maximum valid data value for a variable of typeint should be of typeint ,
whereas the attributevalid_max for a variable of typedouble should instead be of typedouble .

Attributes are more dynamic than variables or dimensions; they can be deleted and have th
type, length, and values changed after they are created, whereas the netCDF interface prov
way to delete a variable or to change its type or shape.

The CDL notation for defining an attribute is

variable_name:attribute_name = list_of_values;

for a variable attribute, or

 :attribute_name = list_of_values;

for a global attribute. The type and length of each attribute are not explicitly declared in CD
they are derived from the values assigned to the attribute. All values of an attribute must be
same type. The notation used for constant values of the various netCDF types is discussed
(see Section 10.3 “CDL Notation for Data Constants,” page 138).

In the netCDF example (see Section 2.1.2 “network Common Data Form Language (CDL),
page 9),units is an attribute for the variablelat that has a 13-character array value
‘degrees_north ’. And valid_range is an attribute for the variablerh that has length 2 and val-
ues ‘0.0 ’ and ‘1.0 ’.

One global attribute---source ---is defined for the example netCDF dataset. This is a characte
array intended for documenting the data. Actual netCDF datasets might have more global

et as a

tions
t doing

 to
set
 and

data,
bject,
bles

nal.

so a vari-
so no

to vari-

the
quire
men-
epre-
attributes to document the origin, history, conventions, and other characteristics of the datas
whole.

Most generic applications that process netCDF datasets assume standard attribute conven
and it is strongly recommended that these be followed unless there are good reasons for no
so. See Section 8.1 “Attribute Conventions,” page 109, for information aboutunits , long_name ,
valid_min , valid_max , valid_range , scale_factor , add_offset , _FillValue , and other
conventional attributes.

Attributes may be added to a netCDF dataset long after it is first defined, so you don’t have
anticipate all potentially useful attributes. However adding new attributes to an existing data
can incur the same expense as copying the dataset. See Chapter 9 “NetCDF File Structure
Performance,” page 131, for a more extensive discussion.

2.5 Differences between Attributes and Variables

In contrast to variables, which are intended for bulk data, attributes are intended for ancillary
or information about the data. The total amount of ancillary data associated with a netCDF o
and stored in its attributes, is typically small enough to be memory-resident. However varia
are often too large to entirely fit in memory and must be split into sections for processing.

Another difference between attributes and variables is that variables may be multidimensio
Attributes are all either scalars (single-valued) or vectors (a single, fixed dimension).

Variables are created with a name, type, and shape before they are assigned data values,
able may exist with no values. The value of an attribute must be specified when it is created,
attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned
ables may have the same units as the variable (for example,valid_range) or have no units (for
example,scale_factor). If you want to store data that requires units different from those of
associated variable, it is better to use a variable than an attribute. More generally, if data re
ancillary data to describe them, are multidimensional, require any of the defined netCDF di
sions to index their values, or require a significant amount of storage, that data should be r
sented using variables rather than attributes.

ss sup-
ted in

ecision
m what-

ntation
ata is

nto a
l type

dvan-
nver-
e, by
reci-
anged

his
es will
e
xam-

capa-
t be
3 Data
This chapter discusses the six primitive netCDF external data types, the kinds of data acce
ported by the netCDF interface, and how data structures other than arrays may be implemen
a netCDF dataset.

3.1 netCDF external data types

The external types supported by the netCDF interface are:

These types were chosen to provide a reasonably wide range of trade-offs between data pr
and number of bits required for each value. These external data types are independent fro
ever internal data types are supported by a particular machine and language combination.

These types are called “external”, because they correspond to the portable external represe
for netCDF data. When a program reads external netCDF data into an internal variable, the d
converted, if necessary, into the specified internal type. Similarly, if you write internal data i
netCDF variable, this may cause it to be converted to a different external type, if the externa
for the netCDF variable differs from the internal type.

The separation of external and internal types and automatic type conversion have several a
tages. You need not be aware of the external type of numeric variables, since automatic co
sion to or from any desired numeric type is available. You can use this feature to simplify cod
making it independent of external types, using a sufficiently wide internal type, e.g., double p
sion, for numeric netCDF data of several different external types. Programs need not be ch
to accommodate a change to the external type of a variable.

If conversion to or from an external numeric type is necessary, it is handled by the library. T
automatic conversion and separation of external data representation from internal data typ
become even more important in a future version of netCDF, when new external types will b
added for packed data for which there may be no natural corresponding internal type, for e
ple, packed arrays of 11-bit values.

Converting from one numeric type to another may result in an error if the target type is not
ble of representing the converted value. For example, an internal short integer type may no

char 8-bit characters intended for representing text.

byte 8-bit signed or unsigned integers (see discussion below).

short 16-bit signed integers.

int 32-bit signed integers.

float or real 32-bit IEEE floating-point.

double 64-bit IEEE floating-point.

ge error
es are

dou-
ults
gle-pre-
oat
 not
ari-

must

er,
.

types

iable,
 func-
tation

type

taset
speci-
other
dding

t to
is first

 ID, a

tCDF
able to hold data stored externally as an integer. When accessing an array of values, a ran
is returned if one or more values are out of the range of representable values, but other valu
converted properly.

Note that mere loss of precision in type conversion does not return an error. Thus, if you read
ble precision values into a single-precision floating-point variable, for example, no error res
unless the magnitude of the double precision value exceeds the representable range of sin
cision floating point numbers on your platform. Similarly, if you read a large integer into a fl
incapable of representing all the bits of the integer in its mantissa, this loss of precision will
result in an error. If you want to avoid such precision loss, check the external types of the v
ables you access to make sure you use an internal type that has adequate precision.

The names for the primitive external data types (byte , char , short , int , float or real , and
double) are reserved words in CDL, so the names of variables, dimensions, and attributes
not be type names.

It is possible to interpretbyte data as either signed (-128 to 127) or unsigned (0 to 255). Howev
when reading byte data to be converted into other numeric types, it is interpreted as signed

See Section 2.3 “Variables,” page 11, for the correspondence between netCDF external data
and the data types of a language.

3.2 Data Access

To access (read or write) netCDF data you specify an open netCDF dataset, a netCDF var
and information (e.g., indices) identifying elements of the variable. The name of the access
tion corresponds to the internal type of the data. If the internal type has a different represen
from the external type of the variable, a conversion between the internal type and external
will take place when the data is read or written.

Access to data isdirect, which means you can access a small subset of data from a large da
efficiently, without first accessing all the data that precedes it. Reading and writing data by
fying a variable, instead of a position in a file, makes data access independent of how many
variables are in the dataset, making programs immune to data format changes that involve a
more variables to the data.

In the C and FORTRAN interfaces, datasets are not specified by name every time you wan
access data, but instead by a small integer called a dataset ID, obtained when the dataset
created or opened.

Similarly, a variable is not specified by name for every data access either, but by a variable
small integer used to identify each variable in a netCDF dataset.

3.2.1 Forms of Data Access

The netCDF interface supports several forms of direct access to data values in an open ne

ank =
 are

The

 The

th of
 value
uct of

re
um of
re no
s

ample

on
dataset. We describe each of these forms of access in order of increasing generality:

• access to all elements;
• access to individual elements, specified with anindex vector;
• access to array sections, specified with anindex vector, andcount vector;
• access to subsampled array sections, specified with anindex vector, count vector, andstride

vector; and
• access to mapped array sections, specified with anindex vector, count vector, stride vector,

and anindex mapping vector.

The four types of vector (index vector, count vector, stride vectorandindex mapping vector) each
have one element for each dimension of the variable. Thus, for an n-dimensional variable (r
n), n-element vectors are needed. If the variable is a scalar (no dimensions), these vectors
ignored.

An array section is a “slab” or contiguous rectangular block that is specified by two vectors.
index vector gives the indices of the element in the corner closest to the origin. Thecount vector
gives the lengths of the edges of the slab along each of the variable’s dimensions, in order.
number of values accessed is the product of these edge lengths.

A subsampled array section is similar to anarray section, except that an additionalstride vector
is used to specify sampling. This vector has an element for each dimension giving the leng
the strides to be taken along that dimension. For example, a stride of 4 means every fourth
along the corresponding dimension. The total number of values accessed is again the prod
the elements of thecount vector.

A mapped array section is similar to asubsampled array section except that an additionalindex
mapping vector allows one to specify how data values associated with the netCDF variable a
arranged in memory. The offset of each value from the reference location, is given by the s
the products of each index (of the imaginary internal array which would be used if there we
mapping) by the corresponding element of the index mapping vector. The number of value
accessed is the same as for asubsampled array section.

The use of mapped array sections is discussed more fully below, but first we present an ex
of the more commonly used array-section access.

3.2.2 An Example of Array-Section Access

Assume that in our earlier example of a netCDF dataset (see Section 2.1.2 “network Comm
Data Form Language (CDL),” page 9), we wish to read a cross-section of all the data for thetemp

variable at one level (say, the second), and assume that there are currently three records (time val-
ues) in the netCDF dataset. Recall that the dimensions are defined as

 lat = 5, lon = 10, level = 4, time = unlimited;

and the variabletemp is declared as

d all
d be (0,

d

es
r in

a dif-
dural

tten
up-

es of
 float temp(time, level, lat, lon);

in the CDL notation.

A corresponding C variable that holds data for only one level might be declared as

#define LATS 5
#define LONS 10
#define LEVELS 1
#define TIMES 3 /* currently */
 …
float temp[TIMES*LEVELS*LATS*LONS];

to keep the data in a one-dimensional array, or

 …
float temp[TIMES][LEVELS][LATS][LONS];

using a multidimensional array declaration.

To specify the block of data that represents just the second level, all times, all latitudes, an
longitudes, we need to provide a start index and some edge lengths. The start index shoul
1, 0, 0) in C, because we want to start at the beginning of each of thetime , lon , andlat dimen-
sions, but we want to begin at the second value of thelevel dimension. The edge lengths shoul
be (3, 1, 5, 10) in C, (since we want to get data for all threetime values, only onelevel value, all
five lat values, and all 10lon values. We should expect to get a total of 150 floating-point valu
returned (3 *1 * 5 * 10), and should provide enough space in our array for this many. The orde
which the data will be returned is with the last dimension,lon , varying fastest:

 temp[0][1][0][0]
 temp[0][1][0][1]
 temp[0][1][0][2]
 temp[0][1][0][3]

 …

 temp[2][1][4][7]
 temp[2][1][4][8]
 temp[2][1][4][9]

Different dimension orders for the C, FORTRAN, or other language interfaces do not reflect
ferent order for values stored on the disk, but merely different orders supported by the proce
interfaces to the languages. In general, it does not matter whether a netCDF dataset is wri
using the C, FORTRAN, or another language interface; netCDF datasets written from any s
ported language may be read by programs written in other supported languages.

3.2.3 More on General Array Section Access

The use of mapped array sections allows non-trivial relationships between the disk address

trix in
a reg-
ure of
array

y-res-

vec-

ly
th of
the
ever,
 differ-

of the
n-

s for

ection
ou may
ad.
variable elements and the addresses where they are stored in memory. For example, a ma
memory could be the transpose of that on disk, giving a quite different order of elements. In
ular array section, the mapping between the disk and memory addresses is trivial: the struct
the in-memory values (i.e., the dimensional lengths and their order) is identical to that of the
section. In a mapped array section, however, anindex mapping vector is used to define the map-
ping between indices of netCDF variable elements and their memory addresses.

With mapped array access, the offset (number of array elements) from the origin of a memor

ident array to a particular point is given by theinner product1 of the index mapping vector with
the point’scoordinate offset vector.A point’s coordinate offset vector gives, for each dimension,
the offset from the origin of the containing array to the point.In C, a point’s coordinate offset
tor is the same as its coordinate vector.

The index mapping vector for a regular array section would have—in order from most rapid
varying dimension to most slowly—a constant 1, the product of that value with the edge leng
the most rapidly varying dimension of the array section, then the product of that value with
edge length of the next most rapidly varying dimension, and so on. In a mapped array, how
the correspondence between netCDF variable disk locations and memory locations can be
ent.

For example, the following C definitions

struct vel {
 int flags;
 float u;
 float v;
} vel[NX][NY];
ptrdiff_t imap[2] = {
 sizeof(struct vel),
 sizeof(struct vel)*NY
};

whereimap is the index mapping vector, can be used to access the memory-resident values
netCDF variable,vel(NY,NX) , even though the dimensions are transposed and the data is co
tained in a 2-D array of structures rather than a 2-D array of floating-point values.

A detailed example of mapped array access is presented in the description of the interface
mapped array access. See Section 7.9 “Write a Mapped Array of Values:nc_put_varm_ type
NF_PUT_VARM_type,” page 78.

Note that, although the netCDF abstraction allows the use of subsampled or mapped array-s
access there use is not required. If you do not need these more general forms of access, y
ignore these capabilities and use single value access or regular array section access inste

1. Theinner product of two vectors [x0, x1, …, xn] and [y0, y1, …, yn] is just x0*y0 +
x1*y1 + … + xn*yn.

exter-
, the

an
pre-

a dif-
e data
 as
ys

CDF
d to
e, you
corre-

e they
le, if
s it
xam-

capa-
ata
ange
er val-

if you
ouble
ou
tissa,
the
ompat-

pre-
te to a
is less
ble is
1024th
3.3 Type Conversion

Each netCDF variable has an external type, specified when the variable is first defined. This
nal type determines whether the data is intended for text or numeric values, and if numeric
range and precision of numeric values.

If the netCDF external type for a variable ischar , only character data representing text strings c
be written to or read from the variable. No automatic conversion of text data to a different re
sentation is supported.

If the type is numeric, however, the netCDF library allows you to access the variable data as
ferent type and provides automatic conversion between the numeric data in memory and th
in the netCDF variable. For example, if you write a program that deals with all numeric data
double-precision floating point values, you can read netCDF data into double-precision arra
without knowing or caring what the external type of the netCDF variables are. On reading net
data, integers of various sizes and single-precision floating-point values will all be converte
double-precision, if you use the data access interface for double-precision values. Of cours
can avoid automatic numeric conversion by using the netCDF interface for a value type that
sponds to the external data type of each netCDF variable, where such value types exist.

The automatic numeric conversions performed by netCDF are easy to understand, becaus
behave just like assignment of data of one type to a variable of a different type. For examp
you read floating-point netCDF data as integers, the result is truncated towards zero, just a
would be if you assigned a floating-point value to an integer variable. Such truncation is an e
ple of the loss of precision that can occur in numeric conversions.

Converting from one numeric type to another may result in an error if the target type is not
ble of representing the converted value. For example, an integer may not be able to hold d
stored externally as an IEEE floating-point number. When accessing an array of values, a r
error is returned if one or more values are out of the range of representable values, but oth
ues are converted properly.

Note that mere loss of precision in type conversion does not result in an error. For example,
read double precision values into an integer, no error results unless the magnitude of the d
precision value exceeds the representable range of integers on your platform. Similarly, if y
read a large integer into a float incapable of representing all the bits of the integer in its man
this loss of precision will not result in an error. If you want to avoid such precision loss, check
external types of the variables you access to make sure you use an internal type that has a c
ible precision.

Whether a range error occurs in writing a large floating-point value near the boundary of re
sentable values may be depend on the platform. The largest floating-point value you can wri
netCDF float variable is the largest floating-point number representable on your system that
than 2 to the 128th power. The largest double precision value you can write to a double varia
the largest double-precision number representable on your system that is less than 2 to the
power.

types
ll be
le,

 of
ing
 point-

con-
ibrary
ro-

t row

g
limiter

gs per-
vari-
that
ds of
This automatic conversion and separation of external data representation from internal data
will become even more important in a future version of netCDF, when new external types wi
added for packed data for which there is no natural corresponding internal type, for examp
arrays of 11-bit values.

3.4 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection
named arrays with attached vector attributes. NetCDF is not particularly well-suited for stor
linked lists, trees, sparse matrices, ragged arrays or other kinds of data structures requiring
ers.

It is possible to build other kinds of data structures from sets of arrays by adopting various
ventions regarding the use of data in one array as pointers into another array. The netCDF l
won’t provide much help or hindrance with constructing such data structures, but netCDF p
vides the mechanisms with which such conventions can be designed.

The following example stores a ragged arrayragged_mat using an attributerow_index to name
an associated index variable giving the index of the start of each row. In this example, the firs
contains 12 elements, the second row contains 7 elements (19 - 12), and so on.

 float ragged_mat(max_elements);
 ragged_mat:row_index = "row_start";
 int row_start(max_rows);
data:
 row_start = 0, 12, 19, …

As another example, netCDF variables may be grouped within a netCDF dataset by definin
attributes that list the names of the variables in each group, separated by a conventional de
such as a space or comma. Using a naming convention for attribute names for such groupin
mits any number of named groups of variables. A particular conventional attribute for each
able might list the names of the groups of which it is a member. Use of attributes, or variables
refer to other attributes or variables, provides a flexible mechanism for representing some kin
complex structures in netCDF datasets.

cre-
en-

needed
ry

r
taset

need to

mmon
; omit
at are
ts.

 two

ead or
you are

e, call

lues of
4 Use of the NetCDF Library
You can use the netCDF library without knowing about all of the netCDF interface. If you are
ating a netCDF dataset, only a handful of routines are required to define the necessary dim
sions, variables, and attributes, and to write the data to the netCDF dataset. (Even less are
if you use thencgen utility to create the dataset before running a program using netCDF libra
calls to write data.) Similarly, if you are writing software to access data stored in a particula
netCDF object, only a small subset of the netCDF library is required to open the netCDF da
and access the data. Authors of generic applications that access arbitrary netCDF datasets
be familiar with more of the netCDF library.

In this chapter we provide templates of common sequences of netCDF calls needed for co
uses. For clarity we present only the names of routines; omit declarations and error checking
the type-specific suffixes of routine names for variables and attributes; indent statements th
typically invoked multiple times; and use… to represent arbitrary sequences of other statemen
Full parameter lists are described in later chapters.

4.1 Creating a NetCDF Dataset

Here is a typical sequence of netCDF calls used to create a new netCDF dataset:

 nc_create /* create netCDF dataset: enter define mode */
 …
 nc_def_dim /* define dimensions: from name and length */
 …
 nc_def_var /* define variables: from name, type, … */
 …
 nc_put_att /* put attribute: assign attribute values */
 …
 nc_enddef /* end definitions: leave define mode */
 …
 nc_put_var /* provide values for variables */
 …
 nc_close /* close: save new netCDF dataset */

Only one call is needed to create a netCDF dataset, at which point you will be in the first of
netCDFmodes. When accessing an open netCDF dataset, it is either indefine modeor data mode.
In define mode, you can create dimensions, variables, and new attributes, but you cannot r
write variable data. In data mode, you can access data and change existing attributes, but
not permitted to create new dimensions, variables, or attributes.

One call tonc_def_dim is needed for each dimension created. Similarly, one call tonc_def_var

is needed for each variable creation, and one call to a member of thenc_put_att family is needed
for each attribute defined and assigned a value. To leave define mode and enter data mod
nc_enddef.

Once in data mode, you can add new data to variables, change old values, and change va

gle val-

n at
i-

s of

call-
o-

RE
anges

t also

taset

ID that

 to
 the

 to
existing attributes (so long as the attribute changes do not require more storage space). Sin
ues may be written to a netCDF variable with one of the members of thenc_put_var1 family,
depending on what type of data you have to write. All the values of a variable may be writte
once with one of the members of thenc_put_var family. Arrays or array cross-sections of a var
able may be written using members of thenc_put_vara family. Subsampled array sections may
be written using members of thenc_put_vars family. Mapped array sections may be written
using members of thenc_put_varm family. (Subsampled and mapped access are general form
data access that are explained later.)

Finally, you should explicitly close all netCDF datasets that have been opened for writing by
ing nc_close. By default, access to the file system is buffered by the netCDF library. If a pr
gram terminates abnormally with netCDF datasets open for writing, your most recent
modifications may be lost. This default buffering of data is disabled by setting the NC_SHA
flag when opening the dataset. But even if this flag is set, changes to attribute values or ch
made in define mode are not written out untilnc_sync or nc_close is called.

4.2 Reading a NetCDF Dataset with Known Names

Here we consider the case where you know the names of not only the netCDF datasets, bu
the names of their dimensions, variables, and attributes. (Otherwise you would have to do
“inquire” calls.) The order of typical C calls to read data from those variables in a netCDF da
is:

 nc_open /* open existing netCDF dataset */
 …
 nc_inq_dimid /* get dimension IDs */
 …
 nc_inq_varid /* get variable IDs */
 …
 nc_get_att /* get attribute values */
 …
 nc_get_var /* get values of variables */
 …
 nc_close /* close netCDF dataset */

First, a single call opens the netCDF dataset, given the dataset name, and returns a netCDF
is used to refer to the open netCDF dataset in all subsequent calls.

Next, a call tonc_inq_dimid for each dimension of interest gets the dimension ID from the
dimension name. Similarly, each required variable ID is determined from its name by a call
nc_inq_varid Once variable IDs are known, variable attribute values can be retrieved using
netCDF ID, the variable ID, and the desired attribute name as input to a member of the
nc_get_att family (typically nc_get_att_text or nc_get_att_double) for each desired
attribute. Variable data values can be directly accessed from the netCDF dataset with calls
members of thenc_get_var1 family for single values, thenc_get_var family for entire vari-
ables, or various other members of thenc_get_vara , nc_get_vars , or nc_get_varm families for
array, subsampled or mapped access.

 every
ames

ts by
ion, a

tCDF
e
, if

pro-

not be
ng all
h
.

bles.
of
Finally, the netCDF dataset is closed withnc_close. There is no need to close a dataset open
only for reading.

4.3 Reading a netCDF Dataset with Unknown Names

It is possible to write programs (e.g., generic software) which do such things as processing
variable, without needing to know in advance the names of these variables. Similarly, the n
of dimensions and attributes may be unknown.

Names and other information about netCDF objects may be obtained from netCDF datase
calling inquire functions. These return information about a whole netCDF dataset, a dimens
variable, or an attribute. The following template illustrates how they are used:

 nc_open /* open existing netCDF dataset */
 …
 nc_inq /* find out what is in it */
 …
 nc_inq_dim /* get dimension names, lengths */
 …
 nc_inq_var /* get variable names, types, shapes */
 …
 nc_inq_attname /* get attribute names */
 …
 nc_inq_att /* get attribute types and lengths */
 …
 nc_get_att /* get attribute values */
 …
 nc_get_var /* get values of variables */
 …
 nc_close /* close netCDF dataset */

As in the previous example, a single call opens the existing netCDF dataset, returning a ne
ID. This netCDF ID is given to thenc_inq routine, which returns the number of dimensions, th
number of variables, the number of global attributes, and the ID of the unlimited dimension
there is one.

All the inquire functions are inexpensive to use and require no I/O, since the information they
vide is stored in memory when a netCDF dataset is first opened.

Dimension IDs use consecutive integers, beginning at 0. Also dimensions, once created, can
deleted. Therefore, knowing the number of dimension IDs in a netCDF dataset means knowi
the dimension IDs: they are the integers 0, 1, 2, …up to the number of dimensions. For eac
dimension ID, a call to the inquire functionnc_inq_dim returns the dimension name and length

Variable IDs are also assigned from consecutive integers 0, 1, 2, … up to the number of varia
These can be used innc_inq_var calls to find out the names, types, shapes, and the number
attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calls tonc_inq_attname return

with
,

alling a

ibutes
men-

can be
sions,

e

stency

con-
the name for each attribute given the netCDF ID, variable ID, and attribute number. Armed
the attribute name, a call tonc_inq_att returns its type and length. Given the type and length
you can allocate enough space to hold the attribute values. Then a call to a member of the
nc_get_att family returns the attribute values.

Once the IDs and shapes of netCDF variables are known, data values can be accessed by c
member of thenc_get_var1 family for single values, or members of thenc_get_var,

nc_get_vara, nc_get_vars, or nc_get_varm f or various kinds of array access.

4.4 Adding New Dimensions, Variables, Attributes

An existing netCDF dataset can be extensively altered. New dimensions, variables, and attr
can be added or existing ones renamed, and existing attributes can be deleted. Existing di
sions, variables, and attributes can be renamed. The following code template lists a typical
sequence of calls to add new netCDF components to an existing dataset:

 nc_open /* open existing netCDF dataset */
 …
 nc_redef /* put it into define mode */
 …
 nc_def_dim /* define additional dimensions (if any) */
 …
 nc_def_var /* define additional variables (if any) */
 …
 nc_put_att /* define additional attributes (if any) */
 …
 nc_enddef /* check definitions, leave define mode */
 …
 nc_put_var /* provide values for new variables */
 …
 nc_close /* close netCDF dataset */

A netCDF dataset is first opened by thenc_open call. This call puts the open dataset indata
mode, which means existing data values can be accessed and changed, existing attributes
changed (so long as they do not grow), but nothing can be added. To add new netCDF dimen
variables, or attributes you must enterdefine mode, by callingnc_redef . In define mode, call
nc_def_dim to define new dimensions,nc_def_var to define new variables, and a member of th
nc_put_att family to assign new attributes to variables or enlarge old attributes.

You can leave define mode and reenter data mode, checking all the new definitions for consi
and committing the changes to disk, by callingnc_enddef . If you do not wish to reenter data
mode, just callnc_close , which will have the effect of first callingnc_enddef.

Until thenc_enddef call, you may back out of all the redefinitions made in define mode and
restore the previous state of the netCDF dataset by callingnc_abort. You may also use the
nc_abort call to restore the netCDF dataset to a consistent state if the call tonc_enddef fails. If
you have callednc_close from definition mode and the implied call tonc_enddef fails,
nc_abort will automatically be called to close the netCDF dataset and leave it in its previous

y is
i-
efine
l to the
ders to

CDF
may
g the
ide

es-

e, if
 no

ing

es
ibrary
d link
mples

ks,

tion.
sistent state (before you entered define mode).

At most one process should have a netCDF dataset open for writing at one time. The librar
designed to provide limited support for multiple concurrent readers with one writer, via disc
plined use of the nc_sync function and the NC_SHARE flag. If a writer makes changes in d
mode, such as the addition of new variables, dimensions, or attributes, some means externa
library is necessary to prevent readers from making concurrent accesses and to inform rea
call nc_sync before the next access.

4.5 Error Handling

The netCDF library provides the facilities needed to handle errors in a flexible way. Each net
function returns an integer status value. If the returned status value indicates an error, you
handle it in any way desired, from printing an associated error message and exiting to ignorin
error indication and proceeding (not recommended!). For simplicity, the examples in this gu
check the error status and call a separate function to handle any errors.

Thenc_strerror function is available to convert a returned integer error status into an error m
sage string.

Occasionally, low-level I/O errors may occur in a layer below the netCDF library. For exampl
a write operation causes you to exceed disk quotas or to attempt to write to a device that is
longer available, you may get an error from a layer below the netCDF library, but the result
write error will still be reflected in the returned status value.

4.6 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN interfac
differ, depending on the operating system, the available compilers, and where the netCDF l
and include files are installed. Nevertheless, we provide here examples of how to compile an
a program that uses the netCDF library on a Unix platform, so that you can adjust these exa
to fit your installation.

Every C file that references netCDF functions or constants must contain an appropriate#include

statement before the first such reference:

#include <netcdf.h>

Unless thenetcdf.h file is installed in a standard directory where the C compiler always loo
you must use the-I option when invoking the compiler, to specify a directory wherenetcdf.h is
installed, for example:

cc -c -I/usr/local/netcdf/include myprogram.c

Alternatively, you could specify an absolute path name in the#include statement, but then your
program would not compile on another platform where netCDF is installed in a different loca

, you
:

Unless the netCDF library is installed in a standard directory where the linker always looks
must use the-L and-l options to link an object file that uses the netCDF library. For example

cc -o myprogram myprogram.o -L/usr/local/netcdf/lib -lnetcdf

Alternatively, you could specify an absolute path name for the library:

cc -o myprogram myprogram.o -l/usr/local/netcdf/lib/libnetcdf.a

et or

Once a

or a

ll then
tCDF
ssoci-

, and

apter

ns:

func-

tCDF
5 Datasets
This chapter presents the interfaces of the netCDF functions that deal with a netCDF datas
the whole netCDF library.

A netCDF dataset that has not yet been opened can only be referred to by its dataset name.
netCDF dataset is opened, it is referred to by anetCDF ID, which is a small nonnegative integer
returned when you create or open the dataset. A netCDF ID is much like a file descriptor in C
logical unit number in FORTRAN. In any single program, the netCDF IDs of distinct open
netCDF datasets are distinct. A single netCDF dataset may be opened multiple times and wi
have multiple distinct netCDF IDs; however at most one of the open instances of a single ne
dataset should permit writing. When an open netCDF dataset is closed, the ID is no longer a
ated with a netCDF dataset.

Functions that deal with the netCDF library include:

• Get version of library.
• Get error message corresponding to a returned error code.

The operations supported on a netCDF dataset as a single object are:

• Create, given dataset name and whether to overwrite or not.
• Open for access, given dataset name and read or write intent.
• Put into define mode, to add dimensions, variables, or attributes.
• Take out of define mode, checking consistency of additions.
• Close, writing to disk if required.
• Inquire about the number of dimensions, number of variables, number of global attributes

ID of the unlimited dimension, if any.
• Synchronize to disk to make sure it is current.
• Set and unsetnofill mode for optimized sequential writes.

After a summary of conventions used in describing the netCDF interfaces, the rest of this ch
presents a detailed description of the interfaces for these operations.

5.1 NetCDF Library Interface Descriptions

Each interface description for a particular netCDF function in this and later chapters contai

• a description of the purpose of the function;
• a C function prototype that presents the type and order of the formal parameters to the

tion;
• a description of each formal parameter in the C interface;
• a list of possible error conditions; and
• an example of a C program fragment calling the netCDF function (and perhaps other ne

functions).

us

espond-

g to
ious

mes-

 and

nd

e

The examples follow a simple convention for error handling, always checking the error stat
returned from each netCDF function call and calling ahandle_error function in case an error
was detected. For an example of such a function, see Section 5.2 “Get error message corr
ing to error status:nc_strerror NF_STRERROR ,” page 32.

5.2 Get error message corresponding to error status:nc_strerror

The functionnc_strerror returns a static reference to an error message string correspondin
an integer netCDF error status or to a system error number, presumably returned by a prev
call to some other netCDF function. The list of netCDF error status codes is available in the
appropriate include file for each language binding.

Usage

const char * nc_strerror(int ncerr);

Errors

If you provide an invalid integer error status that does not correspond to any netCDF error
sage or or to any system error message (as understood by the systemstrerror function),
nc_strerror returns a string indicating that there is no such error status.

Example

Here is an example of a simple error handling function that usesnc_strerror to print the error
message corresponding to the netCDF error status returned from any netCDF function call
then exit:

#include <netcdf.h>
 …
void handle_error(int status) {
if (status != NC_NOERR) {
 fprintf(stderr, "%s\n", nc_strerror(status));
 exit(-1);
 }
}

5.3 Get netCDF library version:nc_inq_libvers

The functionnc_inq_libvers returns a string identifying the version of the netCDF library, a
when it was built.

ncerr An error status that might have been returned from a previous call to som
netCDF function.

e used
ed for
ributes.

e and

fer

er
es are
ed

see
Usage

const char * nc_inq_libvers(void);

Errors

This function takes no arguments, and thus no errors are possible in its invocation.

Example

Here is an example usingnc_inq_libvers to print the version of the netCDF library with which
the program is linked:

#include <netcdf.h>
 …
 printf("%s\n", nc_inq_libvers());

5.4 Create a NetCDF dataset:nc_create

This function creates a new netCDF dataset, returning a netCDF ID that can subsequently b
to refer to the netCDF dataset in other netCDF function calls. The new netCDF dataset open
write access and placed in define mode, ready for you to add dimensions, variables, and att

A creation mode flag specifies whether to overwrite any existing dataset with the same nam
whether access to the dataset is shared.

Usage

int nc_create (const char* path, int cmode, int *ncidp);

path The file name of the new netCDF dataset.

cmode The creation mode. A zero value (orNC_CLOBBER) specifies the default
behavior: overwrite any existing dataset with the same file name and buf
and cache accesses for efficiency.
Otherwise, the creation mode isNC_NOCLOBBER, NC_SHARE, or
NC_NOCLOBBER|NC_SHARE. Setting theNC_NOCLOBBERflag means you do not
want to clobber (overwrite) an existing dataset; an error (NC_EEXIST) is
returned if the specified dataset already exists. TheNC_SHARE flag is appro-
priate when one process may be writing the dataset and one or more oth
processes reading the dataset concurrently; it means that dataset access
not buffered and caching is limited. Since the buffering scheme is optimis
for sequential access, programs that do not access data sequentially may
some performance improvement by setting theNC_SHARE flag.

ncidp Pointer to location where returned netCDF ID is to be stored.

:

o cre-

ncy

ng
and

ding
 and

l
rfor-
Errors

nc_create returns the valueNC_NOERRif no errors occurred. Possible causes of errors include

• Passing a dataset name that includes a directory that does not exist.
• Specifying a dataset name of a file that exists and also specifyingNC_NOCLOBBER.
• Specifying a meaningless value for the creation mode.
• Attempting to create a netCDF dataset in a directory where you don’t have permission t

ate files.

Example

In this example we create a netCDF dataset namedfoo.nc ; we want the dataset to be created in
the current directory only if a dataset with that name does not already exist:

#include <netcdf.h>
 …
int status;
int ncid;
 …
status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

5.5 Open a NetCDF Dataset for Access:nc_open

The functionnc_open opens an existing netCDF dataset for access.

Usage

int nc_open (const char *path, int omode, int *ncidp);

path File name for netCDF dataset to be opened.

omode A zero value (orNC_NOWRITE) specifies the default behavior: open the
dataset with read-only access, buffering and caching accesses for efficie
Otherwise, the creation mode isNC_WRITE, NC_SHARE, or
NC_WRITE|NC_SHARE. Setting theNC_WRITEflag opens the dataset with read-
write access. (“Writing” means any kind of change to the dataset, includi
appending or changing data, adding or renaming dimensions, variables,
attributes, or deleting attributes.) TheNC_SHAREflag is appropriate when one
process may be writing the dataset and one or more other processes rea
the dataset concurrently; it means that dataset accesses are not buffered
caching is limited. Since the buffering scheme is optimised for sequentia
access, programs that do not access data sequentially may see some pe
mance improvement by setting theNC_SHARE flag.

ncidp Pointer to location where returned netCDF ID is to be stored.

bles,

i-
Errors

nc_open returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

• The specified netCDF dataset does not exist.
• A meaningless mode was specified.

Example

Here is an example usingnc_open to open an existing netCDF dataset namedfoo.nc for read-
only, non-shared access:

#include <netcdf.h>
 …
int status;
int ncid;
 …
status = nc_open("foo.nc", 0, &ncid);
if (status != NC_NOERR) hendle_error(status);

5.6 Put Open NetCDF Dataset into Define Mode:nc_redef

The functionnc_redef puts an open netCDF dataset into define mode, so dimensions, varia
and attributes can be added or renamed and attributes can be deleted.

Usage

int nc_redef(int ncid);

Errors

nc_redef returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status ind
cates an error. Possible causes of errors include:

• The specified netCDF dataset is already in define mode.
• The specified netCDF dataset was opened for read-only.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_redef to open an existing netCDF dataset namedfoo.nc and put it
into define mode:

#include <netcdf.h>
 …

ncid netCDF ID, from a previous call tonc_open or nc_create .

de to
lems

“Set

e

di-
int status;
int ncid;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid); /* open dataset */
if (status != NC_NOERR) handle_error(status);
 …
status = nc_redef(ncid); /* put in define mode */
if (status != NC_NOERR) handle_error(status);

5.7 Leave Define Mode:nc_enddef

The functionnc_enddef takes an open netCDF dataset out of define mode. The changes ma
the netCDF dataset while it was in define mode are checked and committed to disk if no prob
occurred. Non-record variables may be initialized to a “fill value” as well (see Section 5.12
Fill Mode for Writes:nc_set_fill NF_SET_FILL ,” page 46). The netCDF dataset is then
placed in data mode, so variable data can be read or written.

This call may involve copying data under some circumstances. See Chapter 9 “NetCDF Fil
Structure and Performance,” page 131, for a more extensive discussion.

Usage

int nc_enddef(int ncid);

Errors

nc_enddef returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status in
cates an error. Possible causes of errors include:

• The specified netCDF dataset is not in define mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_enddef to finish the definitions of a new netCDF dataset named
foo.nc and put it into data mode:

#include <netcdf.h>
 …
int status;
int ncid;
 …
status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

 … /* create dimensions, variables, attributes */

ncid NetCDF ID, from a previous call tonc_open or nc_create .

e was
e next

i-

t,
ta
status = nc_enddef(ncid); /*leave define mode*/
if (status != NC_NOERR) handle_error(status);

5.8 Close an Open NetCDF Dataset:nc_close

The functionnc_close closes an open netCDF dataset. If the dataset is in define mode,
nc_enddef will be called before closing. (In this case, ifnc_enddef returns an error,nc_abort

will automatically be called to restore the dataset to the consistent state before define mod
last entered.) After an open netCDF dataset is closed, its netCDF ID may be reassigned to th
netCDF dataset that is opened or created.

Usage

int nc_close(int ncid);

Errors

nc_close returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status ind
cates an error. Possible causes of errors include:

• Define mode was entered and the automatic call made tonc_enddef failed.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_close to finish the definitions of a new netCDF dataset named
foo.nc and release its netCDF ID:

#include <netcdf.h>
 …
int status;
int ncid;
 …
status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);

 … /* create dimensions, variables, attributes */

status = nc_close(ncid); /* close netCDF dataset */
if (status != NC_NOERR) handle_error(status);

5.9 Inquire about an Open NetCDF Dataset:nc_inq Family

Members of thenc_inq family of functions return information about an open netCDF datase
given its netCDF ID. Dataset inquire functions may be called from either define mode or da

ncid NetCDF ID, from a previous call tonc_open or nc_create .

ith
 of

le in

F

s

e
d, -
mode. The first function,nc_inq , returns values for the number of dimensions, the number of
variables, the number of global attributes, and the dimension ID of the dimension defined w
unlimited length, if any. The other functions in the family each return just one of these items
information.

For C, these functions includenc_inq , nc_inq_ndims , nc_inq_nvars , nc_inq_natts , and
nc_inq_unlimdim .

No I/O is performed when these functions are called, since the required information is availab
memory for each open netCDF dataset.

Usage

int nc_inq (int ncid, int *ndimsp, int *nvarsp, int *ngattsp,
 int *unlimdimidp);

int nc_inq_ndims (int ncid, int *ndimsp);

int nc_inq_nvars (int ncid, int *nvarsp);

int nc_inq_natts (int ncid, int *ngattsp);

int nc_inq_unlimdim (int ncid, int *unlimdimidp);

Errors

All members of thenc_inq family return the valueNC_NOERRif no errors occurred. Otherwise,
the returned status indicates an error. Possible causes of errors include:

• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_inq to find out about a netCDF dataset namedfoo.nc :

ncid NetCDF ID, from a previous call tonc_open or nc_create .

ndimsp Pointer to location for returned number of dimensions defined for this
netCDF dataset.

nvarsp Pointer to location for returned number of variables defined for this netCD
dataset.

ngattsp Pointer to location for returned number of global attributes defined for thi
netCDF dataset.

unlimdimidp Pointer to location for returned ID of the unlimited dimension, if there is on
for this netCDF dataset. If no unlimited length dimension has been define
1 is returned.

note
 of
-

nt
g the

r than
cess

 are
s syn-

 and
l

s.

extra
n old
uld see
e, but
set
e
uses
#include <netcdf.h>
 …
int status, ncid, ndims, nvars, ngatts, unlimdimid;
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq(ncid, &ndims, &nvars, &ngatts, &unlimdimid);
if (status != NC_NOERR) handle_error(status);

5.10 Synchronize an Open NetCDF Dataset to Disk:nc_sync

The functionnc_sync offers a way to synchronize the disk copy of a netCDF dataset with in-
memory buffers. There are two reasons you might want to synchronize after writes:

• To minimize data loss in case of abnormal termination, or
• To make data available to other processes for reading immediately after it is written. But

that a process that already had the dataset open for reading would not see the number
records increase when the writing process callsnc_sync ; to accomplish this, the reading pro
cess must callnc_sync .

This function is backward-compatible with previous versions of the netCDF library. The inte
was to allow sharing of a netCDF dataset among multiple readers and one writer, by havin
writer call nc_sync after writing and the readers callnc_sync before each read. For a writer, this
flushes buffers to disk. For a reader, it makes sure that the next read will be from disk rathe
from previously cached buffers, so that the reader will see changes made by the writing pro
(e.g., the number of records written) without having to close and reopen the dataset. If you
only accessing a small amount of data, it can be expensive in computer resources to alway
chronize to disk after every write, since you are giving up the benefits of buffering.

An easier way to accomplish sharing (and what is now recommended) is to have the writer
readers open the dataset with the NC_SHARE flag, and then it will not be necessary to cal
nc_sync at all. However, thenc_sync function still provides finer granularity than the
NC_SHARE flag, if only a few netCDF accesses need to be synchronized among processe

It is important to note that changes to the ancillary data, such as attribute values, arenot propa-
gated automatically by use of the NC_SHARE flag. Use of thenc_sync function is still required
for this purpose.

Sharing datasets when the writer enters define mode to change the data schema requires
care. In previous releases, after the writer left define mode, the readers were left looking at a
copy of the dataset, since the changes were made to a new copy. The only way readers co
the changes was by closing and reopening the dataset. Now the changes are made in plac
readers have no knowledge that their internal tables are now inconsistent with the new data
schema. If netCDF datasets are shared across redefinition, some mechanism external to th
netCDF library must be provided that prevents access by readers during redefinition and ca
the readers to callnc_sync before any subsequent access.

e
F
o
e and

you

ction
d and

 is
When callingnc_sync , the netCDF dataset must be in data mode. A netCDF dataset in defin
mode is synchronized to disk only whennc_enddef is called. A process that is reading a netCD
dataset that another process is writing may callnc_sync to get updated with the changes made t
the data by the writing process (e.g., the number of records written), without having to clos
reopen the dataset.

Data is automatically synchronized to disk when a netCDF dataset is closed, or whenever
leave define mode.

Usage

int nc_sync(int ncid);

Errors

nc_sync returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status indi-
cates an error. Possible causes of errors include:

• The netCDF dataset is in define mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_sync to synchronize the disk writes of a netCDF dataset named
foo.nc :

#include <netcdf.h>
 …
int status;
int ncid;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

 … /* write data or change attributes */

status = nc_sync(ncid); /* synchronize to disk */
if (status != NC_NOERR) handle_error(status);

5.11 Back Out of Recent Definitions:nc_abort

You no longer need to call this function, since it is called automatically bync_close in case the
dataset is in define mode and something goes wrong with committing the changes. The fun
nc_abort just closes the netCDF dataset, if not in define mode. If the dataset is being create
is still in define mode, the dataset is deleted. If define mode was entered by a call tonc_redef , the
netCDF dataset is restored to its state before definition mode was entered and the dataset

ncid NetCDF ID, from a previous call tonc_open or nc_create .

i-

failed.

s
-
either

you
tempts
tion

bout
closed.

Usage

int nc_abort(int ncid);

Errors

nc_abort returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status ind
cates an error. Possible causes of errors include:

• When called from define mode while creating a netCDF dataset, deletion of the dataset
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_abort to back out of redefinitions of a dataset namedfoo.nc :

#include <netcdf.h>
 …
int ncid, status, latid;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);/* open for writing */
if (status != NC_NOERR) handle_error(status);
 …
status = nc_redef(ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);
 …
status = nc_def_dim(ncid, "lat", 18L, &latid);
if (status != NC_NOERR) {
 handle_error(status);
 status = nc_abort(ncid); /* define failed, abort */
 if (status != NC_NOERR) handle_error(status);
}

5.12 Set Fill Mode for Writes:nc_set_fill

This function is intended for advanced usage, to optimize writes under some circumstance
described below. The functionnc_set_fill sets thefill modefor a netCDF dataset open for writ
ing and returns the current fill mode in a return parameter. The fill mode can be specified as
NC_FILL or NC_NOFILL. The default behavior corresponding toNC_FILL is that data is pre-filled
with fill values, that is fill values are written when you create non-record variables or when
write a value beyond data that has not yet been written. This makes it possible to detect at
to read data before it was written. See Section 7.16 “Fill Values,” page 106, for more informa
on the use of fill values. See Section 8.1 “Attribute Conventions,” page 109, for information a
how to define your own fill values.

ncid NetCDF ID, from a previous call tonc_open or nc_create .

s that

 this
e pre-

lid
ty of
fault

call-
ll

e
g no

 nofill

ofill
letely

ers are
The behavior corresponding toNC_NOFILL overrides the default behavior of prefilling data with
fill values. This can be used to enhance performance, because it avoids the duplicate write
occur when the netCDF library writes fill values that are later overwritten with data.

A value indicating which mode the netCDF dataset was already in is returned. You can use
value to temporarily change the fill mode of an open netCDF dataset and then restore it to th
vious mode.

After you turn onNC_NOFILL mode for an open netCDF dataset, you must be certain to write va
data in all the positions that will later be read. Note that nofill mode is only a transient proper
a netCDF dataset open for writing: if you close and reopen the dataset, it will revert to the de
behavior. You can also revert to the default behavior by callingnc_set_fill again to explicitly
set the fill mode toNC_FILL .

There are three situations where it is advantageous to set nofill mode:
1. Creating and initializing a netCDF dataset. In this case, you should set nofill mode before

ing nc_enddef and then writecompletelyall non-record variables and the initial records of a
the record variables you want to initialize.

2. Extending an existing record-oriented netCDF dataset. Set nofill mode after opening th
dataset for writing, then append the additional records to the dataset completely, leavin
intervening unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF dataset. Set
mode before callingnc_enddef then write all the new variables completely.

If the netCDF dataset has an unlimited dimension and the last record was written while in n
mode, then the dataset may be shorter than if nofill mode was not set, but this will be comp
transparent if you access the data only through the netCDF interfaces.

The use of this feature may not be available (or even needed) in future releases. Programm
cautioned against heavy reliance upon this feature.

Usage

int nc_set_fill (int ncid, int fillmode, int *old_modep];

Errors

nc_set_fill returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The specified netCDF ID does not refer to an open netCDF dataset.

ncid NetCDF ID, from a previous call tonc_open or nc_create .

fillmode Desired fill mode for the dataset, eitherNC_NOFILL or NC_FILL .

old_modep Pointer to location for returned current fill mode of the dataset before this
call, eitherNC_NOFILL or NC_FILL .

• The specified netCDF ID refers to a dataset open for read-only access.
• The fill mode argument is neitherNC_NOFILL nor NC_FILL ..

Example

Here is an example usingnc_set_fill to set nofill mode for subsequent writes of a netCDF
dataset namedfoo.nc :

#include <netcdf.h>
 …
int ncid, status, old_fill_mode;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);

 … /* write data with default prefilling behavior */

status = nc_set_fill(ncid, NC_NOFILL, &old_fill_mode); /* set nofill */
if (status != NC_NOERR) handle_error(status);

 … /* write data with no prefilling */

 is in
DF
 the
ion.

e

F
f nec-
 the

. The
sion)
dimen-

s

ns

 It
he
y be
6 Dimensions
Dimensions for a netCDF dataset are defined when it is created, while the netCDF dataset
define mode. Additional dimensions may be added later by reentering define mode. A netC
dimension has a name and a length. At most one dimension in a netCDF dataset can have
unlimited length, which means variables using this dimension can grow along this dimens

There is a suggested limit (100) to the number of dimensions that can be defined in a singl
netCDF dataset. The limit is the value of the predefined macroNC_MAX_DIMS.The purpose of the
limit is to make writing generic applications simpler. They need only provide an array of
NC_MAX_DIMSdimensions to handle any netCDF dataset. The implementation of the netCD
library does not enforce this advisory maximum, so it is possible to use more dimensions, i
essary, but netCDF utilities that assume the advisory maximums may not be able to handle
resulting netCDF datasets.

Ordinarily, the name and length of a dimension are fixed when the dimension is first defined
name may be changed later, but the length of a dimension (other than the unlimited dimen
cannot be changed without copying all the data to a new netCDF dataset with a redefined
sion length.

Dimension lengths in the C interface are typesize_t rather than typeint to make it possible to
access all the data in a netCDF dataset on a platform that only supports a 16-bitint data type, for
example MSDOS. If dimension lengths were typeint instead, it would not be possible to acces
data from variables with a dimension length greater than a 16-bitint can accommodate.

A netCDF dimension in an open netCDF dataset is referred to by a small integer called adimen-
sion ID. In the C interface, dimension IDs are 0, 1, 2, …, in the order in which the dimensio
were defined.

Operations supported on dimensions are:

• Create a dimension, given its name and length.
• Get a dimension ID from its name.
• Get a dimension’s name and length from its ID.
• Rename a dimension.

6.1 Create a Dimension:nc_def_dim

The functionnc_def_dim adds a new dimension to an open netCDF dataset in define mode.
returns (as an argument) a dimension ID, given the netCDF ID, the dimension name, and t
dimension length. At most one unlimited length dimension, called the record dimension, ma
defined for each netCDF dataset.

Usage

int nc_def_dim (int ncid, const char *name, size_t len, int *dimidp);

di-

ned

e
ach

ro

pe
Errors

nc_def_dim returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status in
cates an error. Possible causes of errors include:

• The netCDF dataset is not in definition mode.
• The specified dimension name is the name of another existing dimension.
• The specified length is not greater than zero.
• The specified length is unlimited, but there is already an unlimited length dimension defi

for this netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_def_dim to create a dimension namedlat of length 18 and a unlim-
ited dimension namedrec in a new netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status, ncid, latid, recid;
 …
status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_def_dim(ncid, "lat", 18L, &latid);
if (status != NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "rec", NC_UNLIMITED, &recid);
if (status != NC_NOERR) handle_error(status);

6.2 Get a Dimension ID from Its Name:nc_inq_dimid

The functionnc_inq_dimid returns (as an argument) the ID of a netCDF dimension, given th
name of the dimension. Ifndims is the number of dimensions defined for a netCDF dataset, e
dimension has an ID between0 andndims-1.

ncid NetCDF ID, from a previous call tonc_open or nc_create .

name Dimension name. Must begin with an alphabetic character, followed by ze
or more alphanumeric characters including the underscore (‘_’). Case is sig-
nificant.

len Length of dimension; that is, number of values for this dimension as an
index to variables that use it. This should be either a positive integer (of ty
size_t) or the predefined constantNC_UNLIMITED.

dimidp Pointer to location for returned dimension ID.

s

s the

by
Usage

int nc_inq_dimid (int ncid, const char *name, int *dimidp);

Errors

nc_inq_dimid returns the valueNC_NOERRif no errors occurred. Otherwise, the returned statu
indicates an error. Possible causes of errors include:

• The name that was specified is not the name of a dimension in the netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_inq_dimid to determine the dimension ID of a dimension named
lat , assumed to have been defined previously in an existing netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status, ncid, latid;
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid); /* open for reading */
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_dimid(ncid, "lat", &latid);
if (status != NC_NOERR) handle_error(status);

6.3 Inquire about a Dimension:nc_inq_dim Family

This family of functions returns information about a netCDF dimension. Information about a
dimension includes its name and its length. The length for the unlimited dimension, if any, i
number of records written so far.

The functions in this family includenc_inq_dim , nc_inq_dimname , andnc_inq_dimlen . The
functionnc_inq_dim returns all the information about a dimension; the other functions each
return just one item of information.

Usage

int nc_inq_dim (int ncid, int dimid, char* name, size_t* lengthp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

name Dimension name, a character string beginning with a letter and followed
any sequence of letters, digits, or underscore (‘_’) characters. Case is signif-
icant in dimension names.

dimidp Pointer to location for the returned dimension ID.

s

set

ed
e is
int nc_inq_dimname (int ncid, int dimid, char *name);

int nc_inq_dimlen (int ncid, int dimid, size_t *lengthp);

Errors

These functions return the valueNC_NOERRif no errors occurred. Otherwise, the returned statu
indicates an error. Possible causes of errors include:

• The dimension ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_inq_dim to determine the length of a dimension namedlat , and the
name and current maximum length of the unlimited dimension for an existing netCDF data
namedfoo.nc :

#include <netcdf.h>
 …
int status, ncid, latid, recid;
size_t latlength, recs;
char recname[NC_MAX_NAME];
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid); /* open for reading */
if (status != NC_NOERR) handle_error(status);
status = nc_inq_unlimdim(ncid, &recid); /* get ID of unlimited dimension */
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_dimid(ncid, "lat", &latid); /* get ID for lat dimension */
if (status != NC_NOERR) handle_error(status);
status = nc_inq_dimlen(ncid, latid, &latlength); /* get lat length */
if (status != NC_NOERR) handle_error(status);
/* get unlimited dimension name and current length */
status = nc_inq_dim(ncid, recid, recname, &recs);
if (status != NC_NOERR) handle_error(status);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

dimid Dimension ID, from a previous call tonc_inq_dimid or nc_def_dim .

name Returned dimension name. The caller must allocate space for the return
name. The maximum possible length, in characters, of a dimension nam
given by the predefined constantNC_MAX_NAME.

lengthp Pointer to location for returned length of dimension. For the unlimited
dimension, this is the number of records written so far.

rit-
e. You

s

e.
6.4 Rename a Dimension:nc_rename_dim

The functionnc_rename_dim renames an existing dimension in a netCDF dataset open for w
ing. If the new name is longer than the old name, the netCDF dataset must be in define mod
cannot rename a dimension to have the same name as another dimension.

Usage

int nc_rename_dim(int ncid, int dimid, const char* name);

Errors

nc_rename_dim returns the valueNC_NOERRif no errors occurred. Otherwise, the returned statu
indicates an error. Possible causes of errors include:

• The new name is the name of another dimension.
• The dimension ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.
• The new name is longer than the old name and the netCDF dataset is not in define mod

Example

Here is an example usingnc_rename_dim to rename the dimensionlat to latitude in an exist-
ing netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status, ncid, latid;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid); /* open for writing */
if (status != NC_NOERR) handle_error(status);
 …
status = nc_redef(ncid); /* put in define mode to rename dimension */
if (status != NC_NOERR) handle_error(status);
status = nc_inq_dimid(ncid, "lat", &latid);
if (status != NC_NOERR) handle_error(status);
status = nc_rename_dim(ncid, latid, "latitude");
if (status != NC_NOERR) handle_error(status);
status = nc_enddef(ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

dimid Dimension ID, from a previous call tonc_inq_dimid or nc_def_dim .

name New dimension name.

dataset
F vari-
ay also

 may
defined

able
get-

ify

nd a

orner

ths.
orner

nts for
7 Variables
Variables for a netCDF dataset are defined when the dataset is created, while the netCDF
is in define mode. Other variables may be added later by reentering define mode. A netCD
able has a name, a type, and a shape, which are specified when it is defined. A variable m
have values, which are established later in data mode.

Ordinarily, the name, type, and shape are fixed when the variable is first defined. The name
be changed, but the type and shape of a variable cannot be changed. However, a variable
in terms of the unlimited dimension can grow without bound in that dimension.

A netCDF variable in an open netCDF dataset is referred to by a small integer called avariable
ID.

Variable IDs reflect the order in which variables were defined within a netCDF dataset. Vari
IDs are 0, 1, 2,…, in the order in which the variables were defined. A function is available for
ting the variable ID from the variable name and vice-versa.

Attributes (see Chapter 8 “Attributes,” page 109) may be associated with a variable to spec
such properties as units.

Operations supported on variables are:

• Create a variable, given its name, data type, and shape.
• Get a variable ID from its name.
• Get a variable’s name, data type, shape, and number of attributes from its ID.
• Put a data value into a variable, given variable ID, indices, and value.
• Put an array of values into a variable, given variable ID, corner indices, edge lengths, a

block of values.
• Put a subsampled or mapped array-section of values into a variable, given variable ID, c

indices, edge lengths, stride vector, index mapping vector, and a block of values.
• Get a data value from a variable, given variable ID and indices.
• Get an array of values from a variable, given variable ID, corner indices, and edge leng
• Get a subsampled or mapped array-section of values from a variable, given variable ID, c

indices, edge lengths, stride vector, and index mapping vector.
• Rename a variable.

7.1 Language Types Corresponding to netCDF external data types

The following table gives the netCDF external data types and the corresponding type consta
defining variables in the C interface:

ype.
s (the

than 8

type,

or
The first column gives the netCDF external data type, which is the same as the CDL data t
The next column gives the corresponding C preprocessor macro for use in netCDF function
preprocessor macros are defined in the netCDF C header-filenetcdf.h). The last column gives
the number of bits used in the external representation of values of the corresponding type.

Note that there are no netCDF types corresponding to 64-bit integers or to characters wider
bits in the current version of the netCDF library.

7.2 Create a Variable:nc_def_var

The functionnc_def_var adds a new variable to an open netCDF dataset in define mode. It
returns (as an argument) a variable ID, given the netCDF ID, the variable name, the variable
the number of dimensions, and a list of the dimension IDs.

Usage

int nc_def_var (int ncid, const char *name, nc_type xtype,
 int ndims, const int dimids[], int *varidp);

netCDF/CDL Data
Type

C API Mnemonic Bits

byte NC_BYTE 8

char NC_CHAR 8

short NC_SHORT 16

int NC_INT 32

float NC_FLOAT 32

double NC_DOUBLE 64

ncid NetCDF ID, from a previous call tonc_open or nc_create .

name Variable name. Must begin with an alphabetic character, followed by zero
more alphanumeric characters including the underscore (‘_’). Case is signif-
icant.

xtype One of the set of predefined netCDF external data types. The type of this
parameter,nc_type , is defined in the netCDF header file. The valid netCDF
external data types areNC_BYTE, NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT,
andNC_DOUBLE.

di-

the

.

f
t

Errors

nc_def_var returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status in
cates an error. Possible causes of errors include:

• The netCDF dataset is not in define mode.
• The specified variable name is the name of another existing variable.
• The specified type is not a valid netCDF type.
• The specified number of dimensions is negative or more than the constantNC_MAX_VAR_DIMS,

the maximum number of dimensions permitted for a netCDF variable.
• One or more of the dimension IDs in the list of dimensions is not a valid dimension ID for

netCDF dataset.
• The number of variables would exceed the constantNC_MAX_VARS, the maximum number of

variables permitted in a netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_def_var to create a variable namedrh of typedouble with three
dimensions,time , lat , andlon in a new netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int lat_dim, lon_dim, time_dim; /* dimension IDs */
int rh_id; /* variable ID */
int rh_dimids[3]; /* variable shape */
 …
status = nc_create("foo.nc", NC_NOCLOBBER, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
 /* define dimensions */
status = nc_def_dim(ncid, "lat", 5L, &lat_dim);
if (status != NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "lon", 10L, &lon_dim);
if (status != NC_NOERR) handle_error(status);
status = nc_def_dim(ncid, "time", NC_UNLIMITED, &time_dim);
if (status != NC_NOERR) handle_error(status);

ndims Number of dimensions for the variable. For example,2 specifies a matrix,1
specifies a vector, and0 means the variable is a scalar with no dimensions
Must not be negative or greater than the predefined constant
NC_MAX_VAR_DIMS.

dimids Vector ofndims dimension IDs corresponding to the variable dimensions. I
the ID of the unlimited dimension is included, it must be first. This argumen
is ignored ifndims is 0.

varidp Pointer to location for the returned variable ID.

s

taset.

ion
ribing
 …
 /* define variable */
rh_dimids[0] = time_dim;
rh_dimids[1] = lat_dim;
rh_dimids[2] = lon_dim;
status = nc_def_var (ncid, "rh", NC_DOUBLE, 3, rh_dimids, &rh_id);
if (status != NC_NOERR) handle_error(status);

7.3 Get a Variable ID from Its Name:nc_inq_varid

The functionnc_inq_varid returns the ID of a netCDF variable, given its name.

Usage

int nc_inq_varid (int ncid, const char *name, int *varidp);

Errors

nc_inq_varid returns the valueNC_NOERRif no errors occurred. Otherwise, the returned statu
indicates an error. Possible causes of errors include:

• The specified variable name is not a valid name for a variable in the specified netCDF da
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_inq_varid to find out the ID of a variable namedrh in an existing
netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status, ncid, rh_id;
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);

7.4 Get Information about a Variable from Its ID: nc_inq_var family

A family of functions that returns information about a netCDF variable, given its ID. Informat
about a variable includes its name, type, number of dimensions, a list of dimension IDs desc

ncid NetCDF ID, from a previous call tonc_open or nc_create .

name Variable name for which ID is desired.

varidp Pointer to location for returned variable ID.

he vari-

he

s

st
n-

is
the shape of the variable, and the number of variable attributes that have been assigned to t
able.

The functionnc_inq_var returns all the information about a netCDF variable, given its ID. T
other functions each return just one item of information about a variable.

These other functions includenc_inq_varname , nc_inq_vartype , nc_inq_varndims ,
nc_inq_vardimid , andnc_inq_varnatts .

Usage

int nc_inq_var (int ncid, int varid, char *name, nc_type *xtypep,
 int *ndimsp, int dimids[], int *nattsp);

int nc_inq_varname (int ncid, int varid, char *name);

int nc_inq_vartype (int ncid, int varid, nc_type *xtypep);

int nc_inq_varndims (int ncid, int varid, int *ndimsp);

int nc_inq_vardimid (int ncid, int varid, int dimids[]);

int nc_inq_varnatts (int ncid, int varid, int *nattsp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

name Returned variable name. The caller must allocate space for the returned
name. The maximum possible length, in characters, of a variable name i
given by the predefined constantNC_MAX_NAME.

xtypep Pointer to location for returned variable type, one of the set of predefined
netCDF external data types. The type of this parameter,nc_type , is defined
in the netCDF header file. The valid netCDF external data types are
NC_BYTE, NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT, andNC_DOUBLE.

ndimsp Pointer to location for returned number of dimensions the variable was
defined as using. For example,2 indicates a matrix,1 indicates a vector, and
0 means the variable is a scalar with no dimensions.

dimids Returned vector of*ndimsp dimension IDs corresponding to the variable
dimensions. The caller must allocate enough space for a vector of at lea
*ndimsp integers to be returned. The maximum possible number of dime
sions for a variable is given by the predefined constantNC_MAX_VAR_DIMS.

nattsp Pointer to location for returned number of variable attributes assigned to th
variable.

s

 index
ternal
Errors

These functions return the valueNC_NOERRif no errors occurred. Otherwise, the returned statu
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_inq_var to find out about a variable namedrh in an existing
netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
nc_type rh_type; /* variable type */
int rh_ndims; /* number of dims */
int rh_dims[NC_MAX_VAR_DIMS]; /* variable shape */
int rh_natts /* number of attributes */
 …
status = nc_open ("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
/* we don’t need name, since we already know it */
status = nc_inq_var (ncid, rh_id, 0, &rh_type, &rh_ndims, rh_dims,
 &rh_natts);
if (status != NC_NOERR) handle_error(status);

7.5 Write a Single Data Value:nc_put_var1_ type

The functionsnc_put_var1_ type put a single data value of the specifiedtype into a variable of
an open netCDF dataset that is in data mode. Inputs are the netCDF ID, the variable ID, an
that specifies which value to add or alter, and the data value. The value is converted to the ex
data type of the variable, if necessary.

Usage

int nc_put_var1_text (int ncid, int varid, const size_t index[],
 const char *tp);

int nc_put_var1_uchar (int ncid, int varid, const size_t index[],
 const unsigned char *up);

int nc_put_var1_schar (int ncid, int varid, const size_t index[],
 const signed char *cp);

le, a
se an

of the

or
ex
.

m
e

int nc_put_var1_short (int ncid, int varid, const size_t index[],
 const short *sp);

int nc_put_var1_int (int ncid, int varid, const size_t index[],
 const int *ip);

int nc_put_var1_long (int ncid, int varid, const size_t index[],
 const long *lp);

int nc_put_var1_float (int ncid, int varid, const size_t index[],
 const float *fp);

int nc_put_var1_double(int ncid, int varid, const size_t index[],
 const double *dp);

Errors

nc_put_var1_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified indices were out of range for the rank of the specified variable. For examp

negative index or an index that is larger than the corresponding dimension length will cau
error.

• The specified value is out of the range of values representable by the external data type
variable.

• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_put_var1_double to set the(1,2,3) element of the variable named
rh to 0.5 in an existing netCDF dataset namedfoo.nc . For simplicity in this example, we assume
that we know thatrh is dimensioned withtime , lat , andlon , so we want to set the value ofrh

that corresponds to the secondtime value, the thirdlat value, and the fourthlon value:

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

index[] The index of the data value to be written. The indices are relative to 0, so f
example, the first data value of a two-dimensional variable would have ind
(0,0) . The elements ofindex must correspond to the variable’s dimensions
Hence, if the variable uses the unlimited dimension, the first index would
correspond to the unlimited dimension.

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to the data value to be written. If the type of data values differs fro
the netCDF variable type, type conversion will occur. See Section 3.3 “Typ
Conversion,” page 20, for details.

i-
calar
. The
ension
ternal
#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
static size_t rh_index[] = {1, 2, 3}; /* where to put value */
static double rh_val = 0.5; /* value to put */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_put_var1_double(ncid, rh_id, rh_index, &rh_val);
if (status != NC_NOERR) handle_error(status);

7.6 Write an Entire Variable: nc_put_var_ type

Thenc_put_var_ type family of functions write all the values of a variable into a netCDF var
able of an open netCDF dataset. This is the simplest interface to use for writing a value in a s
variable or whenever all the values of a multidimensional variable can all be written at once
values to be written are associated with the netCDF variable by assuming that the last dim
of the netCDF variable varies fastest in the C interface. The values are converted to the ex
data type of the variable, if necessary.

Usage

int nc_put_var_text (int ncid, int varid, const char *tp);

int nc_put_var_uchar (int ncid, int varid, const unsigned char *up);

int nc_put_var_schar (int ncid, int varid, const signed char *cp);

int nc_put_var_short (int ncid, int varid, const short *sp);

int nc_put_var_int (int ncid, int varid, const int *ip);

int nc_put_var_long (int ncid, int varid, const long *lp);

int nc_put_var_float (int ncid, int varid, const float *fp);

int nc_put_var_double(int ncid, int varid, const double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

ternal

ternal

ta
c-
Errors

Members of thenc_put_var_ type family return the valueNC_NOERRif no errors occurred. Oth-
erwise, the returned status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• One or more of the specified values are out of the range of values representable by the ex

data type of the variable.
• One or more of the specified values are out of the range of values representable by the ex

data type of the variable.
• The specified netCDF dataset is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_put_var_double to add or change all the values of the variable
namedrh to 0.5 in an existing netCDF dataset namedfoo.nc . For simplicity in this example, we
assume that we know thatrh is dimensioned withtime , lat , andlon , and that there are three
time values, fivelat values, and tenlon values.

#include <netcdf.h>
 …
#define TIMES 3
#define LATS 5
#define LONS 10
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
double rh_vals[TIMES*LATS*LONS]; /* array to hold values */
int i;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
for (i = 0; i < TIMES*LATS*LONS; i++)
 rh_vals[i] = 0.5;
/* write values into netCDF variable */
status = nc_put_var_double(ncid, rh_id, rh_vals);
if (status != NC_NOERR) handle_error(status);

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to a block of data values to be written. The order in which the da
will be written to the netCDF variable is with the last dimension of the spe
ified variable varying fastest. If the type of data values differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 20, for details.

r of
 are
riable

st
m-

ed

s.
7.7 Write an Array of Values: nc_put_vara_ type

The functionnc_put_vara_ type writes values into a netCDF variable of an open netCDF
dataset. The part of the netCDF variable to write is specified by giving a corner and a vecto
edge lengths that refer to an array section of the netCDF variable. The values to be written
associated with the netCDF variable by assuming that the last dimension of the netCDF va
varies fastest in the C interface. The netCDF dataset must be in data mode.

Usage

int nc_put_vara_ type (int ncid, int varid, const size_t start[],
 const size_t count[], const type *valuesp);

int nc_put_vara_text (int ncid, int varid, const size_t start[],
 const size_t count[], const char *tp);

int nc_put_vara_uchar (int ncid, int varid, const size_t start[],
 const size_t count[], const unsigned char *up);

int nc_put_vara_schar (int ncid, int varid, const size_t start[],
 const size_t count[], const signed char *cp);

int nc_put_vara_short (int ncid, int varid, const size_t start[],
 const size_t count[], const short *sp);

int nc_put_vara_int (int ncid, int varid, const size_t start[],
 const size_t count[], const int *ip);

int nc_put_vara_long (int ncid, int varid, const size_t start[],
 const size_t count[], const long *lp);

int nc_put_vara_float (int ncid, int varid, const size_t start[],
 const size_t count[], const float *fp);

int nc_put_vara_double(int ncid, int varid, const size_t start[],
 const size_t count[], const double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the fir
of the data values will be written. The indices are relative to 0, so for exa
ple, the first data value of a variable would have index(0, 0, … , 0) . The
size ofstart must be the same as the number of dimensions of the specifi
variable. The elements ofstart must correspond to the variable’s dimen-
sions in order. Hence, if the variable is a record variable, the first index
would correspond to the starting record number for writing the data value

xam-
 will

ut of
n the

ternal

ion
-

rst
.

ta
c-
Errors

nc_put_vara_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified corner indices were out of range for the rank of the specified variable. For e

ple, a negative index, or an index that is larger than the corresponding dimension length
cause an error.

• The specified edge lengths added to the specified corner would have referenced data o
range for the rank of the specified variable. For example, an edge length that is larger tha
corresponding dimension length minus the corner index will cause an error.

• One or more of the specified values are out of the range of values representable by the ex
data type of the variable.

• The specified netCDF dataset is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_put_vara_double to add or change all the values of the variable
namedrh to 0.5 in an existing netCDF dataset namedfoo.nc . For simplicity in this example, we
assume that we know thatrh is dimensioned withtime , lat , andlon , and that there are three
time values, fivelat values, and tenlon values.

#include <netcdf.h>
 …
#define TIMES 3
#define LATS 5
#define LONS 10
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
static size_t start[] = {0, 0, 0}; /* start at first value */
static size_t count[] = {TIMES, LATS, LONS};
double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

count A vector of size_t integers specifying the edge lengths along each dimens
of the block of data values to be written. To write a single value, for exam
ple, specifycount as(1, 1, … , 1) . The length ofcount is the number of
dimensions of the specified variable. The elements ofcount correspond to
the variable’s dimensions. Hence, if the variable is a record variable, the fi
element ofcount corresponds to a count of the number of records to write

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to a block of data values to be written. The order in which the da
will be written to the netCDF variable is with the last dimension of the spe
ified variable varying fastest. If the type of data values differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 20, for details.

y sec-
aset
int i;
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
for (i = 0; i < TIMES*LATS*LONS; i++)
 rh_vals[i] = 0.5;
/* write values into netCDF variable */
status = nc_put_vara_double(ncid, rh_id, start, count, rh_vals);
if (status != NC_NOERR) handle_error(status);

7.8 Write a Subsampled Array of Values:nc_put_vars_ type

Each member of the family of functionsnc_put_vars_ type writes a subsampled (strided) array
section of values into a netCDF variable of an open netCDF dataset. The subsampled arra
tion is specified by giving a corner, a vector of counts, and a stride vector. The netCDF dat
must be in data mode.

Usage

int nc_put_vars_text (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const char *tp);

int nc_put_vars_uchar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const unsigned char *up);

int nc_put_vars_schar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const signed char *cp);

int nc_put_vars_short (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const short *sp);

int nc_put_vars_int (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const int *ip);

int nc_put_vars_long (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const long *lp);

int nc_put_vars_float (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const float *fp);

int nc_put_vars_double(int ncid, int varid, const size_t start[],

ternal

st
m-

,
ing

g

f

ch
e-

le-

nt,

ta
c-
 const size_t count[], const ptrdiff_t stride[],
 const double *dp);

Errors

nc_put_vars_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified start, count and stride generate an index which is out of range.
• One or more of the specified values are out of the range of values representable by the ex

data type of the variable.
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the fir
of the data values will be written. The indices are relative to 0, so for exa
ple, the first data value of a variable would have index(0, 0, … , 0) . The
elements ofstart correspond, in order, to the variable’s dimensions. Hence
if the variable is a record variable, the first index corresponds to the start
record number for writing the data values.

count A vector of size_t integers specifying the number of indices selected alon
each dimension. To write a single value, for example, specifycount as(1,

1, … , 1) . The elements ofcount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element o
count corresponds to a count of the number of records to write.

stride A vector of ptrdiff_t integers that specifies the sampling interval along ea
dimension of the netCDF variable. The elements of the stride vector corr
spond, in order, to the netCDF variable’s dimensions (stride[0] gives the
sampling interval along the most slowly varying dimension of the netCDF
variable). Sampling intervals are specified in type-independent units of e
ments (a value of 1 selects consecutive elements of the netCDF variable
along the corresponding dimension, a value of 2 selects every other eleme
etc.). ANULL stride argument is treated as(1, 1, … , 1) .

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to a block of data values to be written. The order in which the da
will be written to the netCDF variable is with the last dimension of the spe
ified variable varying fastest. If the type of data values differs from the
netCDF variable type, type conversion will occur. See Section 3.3 “Type
Conversion,” page 20, for details.

ng a
ector
able
 order-
e.
Example

Here is an example of usingnc_put_vars_float to write -- from an internal array -- every other
point of a netCDF variable namedrh which is described by the C declarationfloat rh[4][6]

(note the size of the dimensions):

#include <netcdf.h>
 …
#define NDIM 2 /* rank of netCDF variable */
int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
 = {0, 0}; /* first element */
static size_t count[NDIM] /* size of internal array: entire */
 = {2, 3}; /* (subsampled) netCDF variable */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
 = {2, 2}; /* access every other netCDF element */
float rh[2][3]; /* note subsampled sizes for */
 /* netCDF variable dimensions */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_put_vars_float(ncid, rhid, start, count, stride, rh);
if (status != NC_NOERR) handle_error(status);

7.9 Write a Mapped Array of Values:nc_put_varm_ type

Thenc_put_varm_ type family of functions writes a mapped array section of values into a
netCDF variable of an open netCDF dataset. The mapped array section is specified by givi
corner, a vector of counts, a stride vector, and an index mapping vector. The index mapping v
is a vector of integers that specifies the mapping between the dimensions of a netCDF vari
and the in-memory structure of the internal data array. No assumptions are made about the
ing or length of the dimensions of the data array. The netCDF dataset must be in data mod

Usage

int nc_put_varm_text (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const char *tp);

int nc_put_varm_uchar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const unsigned char *up);

int nc_put_varm_schar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],

st
m-

,
ing

g

f

ch
e-

le-

nt,
 const ptrdiff_t imap[], const signed char *cp);

int nc_put_varm_short (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const short *sp);

int nc_put_varm_int (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const int *ip);

int nc_put_varm_long (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const long *lp);

int nc_put_varm_float (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const float *fp);

int nc_put_varm_double(int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], const double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the fir
of the data values will be written. The indices are relative to 0, so for exa
ple, the first data value of a variable would have index(0, 0, … , 0) . The
elements ofstart correspond, in order, to the variable’s dimensions. Hence
if the variable is a record variable, the first index corresponds to the start
record number for writing the data values.

count A vector of size_t integers specifying the number of indices selected alon
each dimension. To write a single value, for example, specifycount as(1,

1, … , 1) . The elements ofcount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element o
count corresponds to a count of the number of records to write.

stride A vector of ptrdiff_t integers that specifies the sampling interval along ea
dimension of the netCDF variable. The elements of the stride vector corr
spond, in order, to the netCDF variable’s dimensions (stride[0] gives the
sampling interval along the most slowly varying dimension of the netCDF
variable). Sampling intervals are specified in type-independent units of e
ments (a value of 1 selects consecutive elements of the netCDF variable
along the corresponding dimension, a value of 2 selects every other eleme
etc.). ANULL stride argument is treated as(1, 1, … , 1) .

o

ternal

ray

a

n-
ta

the
nts
f

hat
 as
e

If
r-
Errors

nc_put_varm_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specifiedstart , count , andstride generate an index which is out of range. Note that n

error checking is possible on theimap vector.
• One or more of the specified values are out of the range of values representable by the ex

data type of the variable.
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

The following imap vector maps in the trivial way a 4x3x2 netCDF variable and an internal ar
of the same shape:

float a[4][3][2]; /* same shape as netCDF variable */
int imap[3] = {6, 2, 1};
 /* netCDF dimension inter-element distance */
 /* ---------------- ---------------------- */
 /* most rapidly varying 1 */
 /* intermediate 2 (=imap[2]*2) */
 /* most slowly varying 6 (=imap[1]*3) */

Using theimap vector above withnc_put_varm_float obtains the same result as simply using
nc_put_var_float .

Here is an example of usingnc_put_varm_float to write -- from a transposed, internal array --
netCDF variable namedrh which is described by the C declarationfloat rh[6][4] (note the
size and order of the dimensions):

imap A vector of ptrdiff_t integers that specifies the mapping between the dime
sions of a netCDF variable and the in-memory structure of the internal da
array. The elements of the index mapping vector correspond, in order, to
netCDF variable’s dimensions (imap[0] gives the distance between eleme
of the internal array corresponding to the most slowly varying dimension o
the netCDF variable). Distances between elements are specified in type-
independent units of elements (the distance between internal elements t
occupy adjacent memory locations is 1 and not the element's byte-length
in netCDF 2). ANULLargument means the memory-resident values have th
same structure as the associated netCDF variable.

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to the location used for computing where the data values will be
found; the data should be of the type appropriate for the function called.
the type of data values differs from the netCDF variable type, type conve
sion will occur. See Section 3.3 “Type Conversion,” page 20, for details.

DF
#include <netcdf.h>
 …
#define NDIM 2 /* rank of netCDF variable */
int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
 = {0, 0}; /* first element */
static size_t count[NDIM] /* size of internal array: entire netCDF */
 = {6, 4}; /* variable; order corresponds to netCDF */
 /* variable -- not internal array */
static ptrdiff_t stride[NDIM]/* variable subsampling intervals: */
 = {1, 1}; /* sample every netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
 = {1, 6}; /* would be {4, 1} if not transposing */
float rh[4][6]; /* note transposition of netCDF variable */
 /* dimensions */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_put_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status != NC_NOERR) handle_error(status);

Here is another example of usingnc_put_varm_float to write -- from a transposed, internal
array -- a subsample of the same netCDF variable, by writing every other point of the netC
variable:

#include <netcdf.h>
 …
#define NDIM 2 /* rank of netCDF variable */
int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
 = {0, 0}; /* first element */
static size_t count[NDIM] /* size of internal array: entire */
 = {3, 2}; /* (subsampled) netCDF variable; order of */
 /* dimensions corresponds to netCDF */
 /* variable -- not internal array */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
 = {2, 2}; /* sample every other netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
 = {1, 3}; /* would be {2, 1} if not transposing */
float rh[2][3]; /* note transposition of (subsampled) */
 /* netCDF variable dimensions */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …

 index
ill be

or
ex
.

-

status = nc_inq_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_put_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status != NC_NOERR) handle_error(status);

7.10 Read a Single Data Value:nc_get_var1_ type

The functionsnc_get_var1_ type get a single data value from a variable of an open netCDF
dataset that is in data mode. Inputs are the netCDF ID, the variable ID, a multidimensional
that specifies which value to get, and the address of a location into which the data value w
read. The value is converted from the external data type of the variable, if necessary.

Usage

int nc_get_var1_text (int ncid, int varid, const size_t index[],
 char *tp);

int nc_get_var1_uchar (int ncid, int varid, const size_t index[],
 unsigned char *up);

int nc_get_var1_schar (int ncid, int varid, const size_t index[],
 signed char *cp);

int nc_get_var1_short (int ncid, int varid, const size_t index[],
 short *sp);

int nc_get_var1_int (int ncid, int varid, const size_t index[],
 int *ip);

int nc_get_var1_long (int ncid, int varid, const size_t index[],
 long *lp);

int nc_get_var1_float (int ncid, int varid, const size_t index[],
 float *fp);

int nc_get_var1_double(int ncid, int varid, const size_t index[],
 double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

index[] The index of the data value to be read. The indices are relative to 0, so f
example, the first data value of a two-dimensional variable would have ind
(0,0) . The elements ofindex must correspond to the variable’s dimensions
Hence, if the variable is a record variable, the first index is the record num
ber.

le, a
se an

e of a
e val-

a
e

Errors

nc_get_var1_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified indices were out of range for the rank of the specified variable. For examp

negative index or an index that is larger than the corresponding dimension length will cau
error.

• The value is out of the range of values representable by the desired data type.
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_get_var1_double to get the(1,2,3) element of the variable
namedrh in an existing netCDF dataset namedfoo.nc . For simplicity in this example, we
assume that we know thatrh is dimensioned withtime , lat , andlon , so we want to get the value
of rh that corresponds to the secondtime value, the thirdlat value, and the fourthlon value:

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
static size_t rh_index[] = {1, 2, 3}; /* where to get value from */
double rh_val; /* where to put it */
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_get_var1_double(ncid, rh_id, rh_index, &rh_val);
if (status != NC_NOERR) handle_error(status);

7.11 Read an Entire Variablenc_get_var_ type

The members of thenc_get_var_ type family of functions read all the values from a netCDF
variable of an open netCDF dataset. This is the simplest interface to use for reading the valu
scalar variable or when all the values of a multidimensional variable can be read at once. Th
ues are read into consecutive locations with the last dimension varying fastest. The netCDF
dataset must be in data mode.

tp, up, cp,
sp, ip, lp,
fp, or, dp

Pointer to the location into which the data value is read. If the type of dat
value differs from the netCDF variable type, type conversion will occur. Se
Section 3.3 “Type Conversion,” page 20, for details.

ta-

ype.

a
e

Usage

int nc_get_var_text (int ncid, int varid, char *tp);

int nc_get_var_uchar (int ncid, int varid, unsigned char *up);

int nc_get_var_schar (int ncid, int varid, signed char *cp);

int nc_get_var_short (int ncid, int varid, short *sp);

int nc_get_var_int (int ncid, int varid, int *ip);

int nc_get_var_long (int ncid, int varid, long *lp);

int nc_get_var_float (int ncid, int varid, float *fp);

int nc_get_var_double(int ncid, int varid, double *dp);

Errors

nc_get_var_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned s
tus indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• One or more of the values are out of the range of values representable by the desired t
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_get_var_double to read all the values of the variable namedrh

from an existing netCDF dataset namedfoo.nc . For simplicity in this example, we assume that
we know thatrh is dimensioned withtime , lat , andlon , and that there are threetime values,
five lat values, and tenlon values.

#include <netcdf.h>
 …
#define TIMES 3
#define LATS 5
#define LONS 10
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to the location into which the data value is read. If the type of dat
value differs from the netCDF variable type, type conversion will occur. Se
Section 3.3 “Type Conversion,” page 20, for details.

vector
ying
double rh_vals[TIMES*LATS*LONS]; /* array to hold values */
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
/* read values from netCDF variable */
status = nc_get_var_double(ncid, rh_id, rh_vals);
if (status != NC_NOERR) handle_error(status);

7.12 Read an Array of Values:nc_get_vara_ type

The members of thenc_get_vara_ type family of functions read an array of values from a
netCDF variable of an open netCDF dataset. The array is specified by giving a corner and a
of edge lengths. The values are read into consecutive locations with the last dimension var
fastest. The netCDF dataset must be in data mode.

Usage

int nc_get_vara_text (int ncid, int varid, const size_t start[],
 const size_t count[] char *tp);

int nc_get_vara_uchar (int ncid, int varid, const size_t start[],
 const size_t count[] unsigned char *up);

int nc_get_vara_schar (int ncid, int varid, const size_t start[],
 const size_t count[] signed char *cp);

int nc_get_vara_short (int ncid, int varid, const size_t start[],
 const size_t count[] short *sp);

int nc_get_vara_int (int ncid, int varid, const size_t start[],
 const size_t count[] int *ip);

int nc_get_vara_long (int ncid, int varid, const size_t start[],
 const size_t count[] long *lp);

int nc_get_vara_float (int ncid, int varid, const size_t start[],
 const size_t count[] float *fp);

int nc_get_vara_double(int ncid, int varid, const size_t start[],
 const size_t count[] double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

xam-
 will

ut of
n the

ype.

st
ple,

eci-

ld

ion
e,

-

a
e

Errors

nc_get_vara_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified corner indices were out of range for the rank of the specified variable. For e

ple, a negative index or an index that is larger than the corresponding dimension length
cause an error.

• The specified edge lengths added to the specified corner would have referenced data o
range for the rank of the specified variable. For example, an edge length that is larger tha
corresponding dimension length minus the corner index will cause an error.

• One or more of the values are out of the range of values representable by the desired t
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_get_vara_double to read all the values of the variable namedrh

from an existing netCDF dataset namedfoo.nc . For simplicity in this example, we assume that
we know thatrh is dimensioned withtime , lat , andlon , and that there are threetime values,
five lat values, and tenlon values.

#include <netcdf.h>
 …
#define TIMES 3

#define LATS 5
#define LONS 10

start A vector of size_t integers specifying the index in the variable where the fir
of the data values will be read. The indices are relative to 0, so for exam
the first data value of a variable would have index(0, 0, … , 0) . The
length ofstart must be the same as the number of dimensions of the sp
fied variable. The elements ofstart correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first index wou
correspond to the starting record number for reading the data values.

count A vector of size_t integers specifying the edge lengths along each dimens
of the block of data values to be read. To read a single value, for exampl
specifycount as(1, 1, … , 1) . The length ofcount is the number of
dimensions of the specified variable. The elements ofcount correspond, in
order, to the variable’s dimensions. Hence, if the variable is a record vari
able, the first element ofcount corresponds to a count of the number of
records to read.

tp, up, cp,
sp, ip, lp,
fp, or, dp

Pointer to the location into which the data value is read. If the type of dat
value differs from the netCDF variable type, type conversion will occur. Se
Section 3.3 “Type Conversion,” page 20, for details.

es
ed by

last
de.
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
static size_t start[] = {0, 0, 0}; /* start at first value */
static size_t count[] = {TIMES, LATS, LONS};
double rh_vals[TIMES*LATS*LONS]; /* array to hold values */
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
/* read values from netCDF variable */
status = nc_get_vara_double(ncid, rh_id, start, count, rh_vals);
if (status != NC_NOERR) handle_error(status);

7.13 Read a Subsampled Array of Values:nc_get_vars_ type

Thenc_get_vars_ type family of functions read a subsampled (strided) array section of valu
from a netCDF variable of an open netCDF dataset. The subsampled array section is specifi
giving a corner, a vector of edge lengths, and a stride vector. The values are read with the
dimension of the netCDF variable varying fastest. The netCDF dataset must be in data mo

Usage

int nc_get_vars_text (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 char *tp);

int nc_get_vars_uchar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 unsigned char *up);

int nc_get_vars_schar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 signed char *cp);

int nc_get_vars_short (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 short *sp);

int nc_get_vars_int (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 int *ip);

int nc_get_vars_long (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 long *lp);

int nc_get_vars_float (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],

ype.

st
ple,

if
g

g

f

 in
s of
es
;

a
e

 float *fp);

int nc_get_vars_double(int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 double *dp)

Errors

nc_get_vars_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified start, count and stride generate an index which is out of range.
• One or more of the values are out of the range of values representable by the desired t
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example that usesnc_get_vars_double to read every other value in each dimension
of the variable namedrh from an existing netCDF dataset namedfoo.nc . For simplicity in this

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the fir
of the data values will be read. The indices are relative to 0, so for exam
the first data value of a variable would have index(0, 0, … , 0) . The ele-
ments ofstart correspond, in order, to the variable’s dimensions. Hence,
the variable is a record variable, the first index corresponds to the startin
record number for reading the data values.

count A vector of size_t integers specifying the number of indices selected alon
each dimension. To read a single value, for example, specifycount as(1,

1, … , 1) . The elements ofcount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element o
count corresponds to a count of the number of records to read.

stride A vector of ptrdiff_t integers specifying, for each dimension, the interval
between selected indices. The elements of the stride vector correspond,
order, to the variable’s dimensions. A value of 1 accesses adjacent value
the netCDF variable in the corresponding dimension; a value of 2 access
every other value of the netCDF variable in the corresponding dimension
and so on. ANULL stride argument is treated as(1, 1, … , 1) .

tp, up, cp,
sp, ip, lp,
fp, or, dp

Pointer to the location into which the data value is read. If the type of dat
value differs from the netCDF variable type, type conversion will occur. Se
Section 3.3 “Type Conversion,” page 20, for details.

ng a
pping
F vari-
ut the
mode.
example, we assume that we know thatrh is dimensioned withtime , lat , andlon , and that there
are threetime values, fivelat values, and tenlon values.

#include <netcdf.h>
 …
#define TIMES 3
#define LATS 5
#define LONS 10
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
static size_t start[] = {0, 0, 0}; /* start at first value */
static size_t count[] = {TIMES, LATS, LONS};
static ptrdiff_t stride[] = {2, 2, 2};/* every other value */
double data[TIMES][LATS][LONS]; /* array to hold values */
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
/* read subsampled values from netCDF variable into array */
status = nc_get_vars_double(ncid, rh_id, start, count, stride,
 &data[0][0][0]);
if (status != NC_NOERR) handle_error(status);
 …

7.14 Read a Mapped Array of Values:nc_get_varm_ type

Thenc_get_varm_ type family of functions reads a mapped array section of values from a
netCDF variable of an open netCDF dataset. The mapped array section is specified by givi
corner, a vector of edge lengths, a stride vector, and an index mapping vector. The index ma
vector is a vector of integers that specifies the mapping between the dimensions of a netCD
able and the in-memory structure of the internal data array. No assumptions are made abo
ordering or length of the dimensions of the data array. The netCDF dataset must be in data

Usage

int nc_get_varm_text (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], char *tp);

int nc_get_varm_uchar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], unsigned char *up);

int nc_get_varm_schar (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], signed char *cp);

st
ple,

if
g

g

f

 in
s of
es
;

int nc_get_varm_short (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], short *sp);

int nc_get_varm_int (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], int *ip);

int nc_get_varm_long (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], long *lp);

int nc_get_varm_float (int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], float *fp);

int nc_get_varm_double(int ncid, int varid, const size_t start[],
 const size_t count[], const ptrdiff_t stride[],
 const ptrdiff_t imap[], double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

start A vector of size_t integers specifying the index in the variable where the fir
of the data values will be read. The indices are relative to 0, so for exam
the first data value of a variable would have index(0, 0, … , 0) . The ele-
ments ofstart correspond, in order, to the variable’s dimensions. Hence,
the variable is a record variable, the first index corresponds to the startin
record number for reading the data values.

count A vector of size_t integers specifying the number of indices selected alon
each dimension. To read a single value, for example, specifycount as(1,

1, … , 1) . The elements ofcount correspond, in order, to the variable’s
dimensions. Hence, if the variable is a record variable, the first element o
count corresponds to a count of the number of records to read.

stride A vector of ptrdiff_t integers specifying, for each dimension, the interval
between selected indices. The elements of the stride vector correspond,
order, to the variable’s dimensions. A value of 1 accesses adjacent value
the netCDF variable in the corresponding dimension; a value of 2 access
every other value of the netCDF variable in the corresponding dimension
and so on. ANULL stride argument is treated as(1, 1, … , 1) .

o

ype.

ray

of a

re-
s-
ents
ca-

d;
e

Errors

nc_get_varm_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned
status indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specifiedstart , count , andstride generate an index which is out of range. Note that n

error checking is possible on theimap vector.
• One or more of the values are out of the range of values representable by the desired t
• The specified netCDF is in define mode rather than data mode.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

The following imap vector maps in the trivial way a 4x3x2 netCDF variable and an internal ar
of the same shape:

float a[4][3][2]; /* same shape as netCDF variable */
size_t imap[3] = {6, 2, 1};
 /* netCDF dimension inter-element distance */
 /* ---------------- ---------------------- */
 /* most rapidly varying 1 */
 /* intermediate 2 (=imap[2]*2) */
 /* most slowly varying 6 (=imap[1]*3) */

Using theimap vector above withnc_get_varm_float obtains the same result as simply using
nc_get_var_float .

Here is an example of usingnc_get_varm_float to transpose a netCDF variable namedrh

which is described by the C declarationfloat rh[6][4] (note the size and order of the dimen-
sions):

imap A vector of integers that specifies the mapping between the dimensions
netCDF variable and the in-memory structure of the internal data array.
imap[0] gives the distance between elements of the internal array corre-
sponding to the most slowly varying dimension of the netCDF variable.
imap[n-1] (where n is the rank of the netCDF variable) gives the distance
between elements of the internal array corresponding to the most rapidly
varying dimension of the netCDF variable. Intervening imap elements cor
spond to other dimensions of the netCDF variable in the obvious way. Di
tances between elements are specified in type-independent units of elem
(the distance between internal elements that occupy adjacent memory lo
tions is 1 and not the element's byte-length as in netCDF 2).

tp, up, cp,
sp, ip, lp,
fp, or, dp

Pointer to the location used for computing where the data values are rea
the data should be of the type appropriate for the function called. If the typ
of data value differs from the netCDF variable type, type conversion will
occur. See Section 3.3 “Type Conversion,” page 20, for details.

-

#include <netcdf.h>
 …
#define NDIM 2 /* rank of netCDF variable */
int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
 = {0, 0}; /* first element */
static size_t count[NDIM] /* size of internal array: entire netCDF */
 = {6, 4}; /* variable; order corresponds to netCDF */
 /* variable -- not internal array */
static ptrdiff_t stride[NDIM] /* variable subsampling intervals: */
 = {1, 1}; /* sample every netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
 = {1, 6}; /* would be {4, 1} if not transposing */
float rh[4][6]; /* note transposition of netCDF variable */
 /* dimensions */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid(ncid, "rh", &rhid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_get_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status != NC_NOERR) handle_error(status);

Here is another example of usingnc_get_varm_float to simultaneously transpose and subsam
ple the same netCDF variable, by accessing every other point of the netCDF variable:

#include <netcdf.h>
 …
#define NDIM 2 /* rank of netCDF variable */
int ncid; /* netCDF ID */
int status; /* error status */
int rhid; /* variable ID */
static size_t start[NDIM] /* netCDF variable start point: */
 = {0, 0}; /* first element */
static size_t count[NDIM] /* size of internal array: entire */
 = {3, 2}; /* (subsampled) netCDF variable; order of */
 /* dimensions corresponds to netCDF */
 /* variable -- not internal array */
static ptrdiff_t stride[NDIM]/* variable subsampling intervals: */
 = {2, 2}; /* sample every other netCDF element */
static ptrdiff_t imap[NDIM] /* internal array inter-element distances; */
 = {1, 3}; /* would be {2, 1} if not transposing */
float rh[2][3]; /* note transposition of (subsampled) */
 /* netCDF variable dimensions */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid(ncid, "rh", &rhid);

 does

er
cter
d write

are not
o byte
read

ngle unit
ith an

le in

e allo-
 not. If
sion

ccess
gths.
ing to
,

te, to

r-
g

if (status != NC_NOERR) handle_error(status);
 …
status = nc_get_varm_float(ncid, rhid, start, count, stride, imap, rh);
if (status != NC_NOERR) handle_error(status);

7.15 Reading and Writing Character String Values

Character strings are not a primitive netCDF external data type, in part because FORTRAN
not support the abstraction of variable-length character strings (the FORTRANLEN function
returns the static length of a character string, not its dynamic length). As a result, a charact
string cannot be written or read as a single object in the netCDF interface. Instead, a chara
string must be treated as an array of characters, and array access must be used to read an
character strings as variable data in netCDF datasets. Furthermore, variable-length strings
supported by the netCDF interface except by convention; for example, you may treat a zer
as terminating a character string, but you must explicitly specify the length of strings to be
from and written to netCDF variables.

Character strings as attribute values are easier to use, since the strings are treated as a si
for access. However, the value of a character-string attribute is still an array of characters w
explicit length that must be specified when the attribute is defined.

When you define a variable that will have character-string values, use acharacter-position dimen-
sionas the most quickly varying dimension for the variable (the last dimension for the variab
C). The length of the character-position dimension will be the maximum string length of any
value to be stored in the character-string variable. Space for maximum-length strings will b
cated in the disk representation of character-string variables whether you use the space or
two or more variables have the same maximum length, the same character-position dimen
may be used in defining the variable shapes.

To write a character-string value into a character-string variable, use either entire variable a
or array access. The latter requires that you specify both a corner and a vector of edge len
The character-position dimension at the corner should be zero for C. If the length of the str
be written isn, then the vector of edge lengths will specifyn in the character-position dimension
and one for all the other dimensions:(1, 1, … , 1, n).

In C, fixed-length strings may be written to a netCDF dataset without the terminating zero by
save space. Variable-length strings should be writtenwith a terminating zero byte so that the
intended length of the string can be determined when it is later read.

Here is an example that defines a record variable,tx , for character strings and stores a characte
string value into the third record usingnc_put_vara_text . In this example, we assume the strin
variable and data are to be added to an existing netCDF dataset namedfoo.nc that already has an
unlimited record dimensiontime .

#include <netcdf.h>
 …
int ncid; /* netCDF ID */

set?
age or
t is
peci-
fied

case
writ-
will
int chid; /* dimension ID for char positions */
int timeid; /* dimension ID for record dimension */
int tx_id; /* variable ID */
#define TDIMS 2 /* rank of tx variable */
int tx_dims[TDIMS]; /* variable shape */
size_t tx_start[TDIMS];
size_t tx_count[TDIMS];
static char tx_val[] =
 "example string"; /* string to be put */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
status = nc_redef(ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);
 …
/* define character-position dimension for strings of max length 40 */
status = nc_def_dim(ncid, "chid", 40L, &chid);
if (status != NC_NOERR) handle_error(status);
 …
/* define a character-string variable */
tx_dims[0] = timeid;
tx_dims[1] = chid; /* character-position dimension last */
status = nc_def_var (ncid, "tx", NC_CHAR, TDIMS, tx_dims, &tx_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_enddef(ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);
 …
/* write tx_val into tx netCDF variable in record 3 */
tx_start[0] = 3; /* record number to write */
tx_start[1] = 0; /* start at beginning of variable */
tx_count[0] = 1; /* only write one record */
tx_count[1] = strlen(tx_val) + 1; /* number of chars to write */
status = nc_put_vara_text(ncid, tx_id, tx_start, tx_count, tx_val);
if (status != NC_NOERR) handle_error(status);

7.16 Fill Values

What happens when you try to read a value that was never written in an open netCDF data
You might expect that this should always be an error, and that you should get an error mess
an error status returned. Youdo get an error if you try to read data from a netCDF dataset tha
not open for reading, if the variable ID is invalid for the specified netCDF dataset, or if the s
fied indices are not properly within the range defined by the dimension lengths of the speci
variable. Otherwise, reading a value that was not written returns a specialfill value used to fill in
any undefined values when a netCDF variable is first written.

You may ignore fill values and use the entire range of a netCDF external data type, but in this
you should make sure you write all data values before reading them. If you know you will be
ing all the data before reading it, you can specify that no prefilling of variables with fill values

or

e

 for
ter
an

 con-
error.

aller

set.
u can-

us
occur by callingnc_set_fill before writing. This may provide a significant performance gain f
netCDF writes.

The variable attribute_FillValue may be used to specify the fill value for a variable. Their ar
default fill values for each type, defined in the include filenetcdf.h: NC_FILL_CHAR ,
NC_FILL_BYTE, NC_FILL_SHORT, NC_FILL_INT , NC_FILL_FLOAT, andNC_FILL_DOUBLE.

The netCDF byte and character types have different default fill values. The default fill value
characters is the zero byte, a useful value for detecting the end of variable-length C charac
strings. If you need a fill value for a byte variable, it is recommended that you explicitly define
appropriate_FillValue attribute, as generic utilities such asncdump will not assume a default fill
value for byte variables.

Type conversion for fill values is identical to type conversion for other values: attempting to
vert a value from one type to another type that can’t represent the value results in a range
Such errors may occur on writing or reading values from a larger type (such as double) to a
smaller type (such as float), if the fill value for the larger type cannot be represented in the sm
type.

7.17 Rename a Variable:nc_rename_var

The functionnc_rename_var changes the name of a netCDF variable in an open netCDF data
If the new name is longer than the old name, the netCDF dataset must be in define mode. Yo
not rename a variable to have the name of any existing variable.

Usage

int nc_rename_var(int ncid, int varid, const char* name);

Errors

nc_rename_var returns the valueNC_NOERRif no errors occurred. Otherwise, the returned stat
indicates an error. Possible causes of errors include:

• The new name is in use as the name of another variable.
• The variable ID is invalid for the specified netCDF dataset.
• The specified netCDF ID does not refer to an open netCDF dataset.

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID.

name New name for the specified variable.

Example

Here is an example usingnc_rename_var to rename the variablerh to rel_hum in an existing
netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_redef(ncid); /* put in define mode to rename variable */
if (status != NC_NOERR) handle_error(status);
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
status = nc_rename_var (ncid, rh_id, "rel_hum");
if (status != NC_NOERR) handle_error(status);
status = nc_enddef(ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

, spe-
 a
define
e has
r more
ot
using

 is
nged
ttribute

ed
e
roviding

and it is
 so.
en use-
8 Attributes
Attributes may be associated with each netCDF variable to specify such properties as units
cial values, maximum and minimum valid values, scaling factors, and offsets. Attributes for
netCDF dataset are defined when the dataset is first created, while the netCDF dataset is in
mode. Additional attributes may be added later by reentering define mode. A netCDF attribut
a netCDF variable to which it is assigned, a name, a type, a length, and a sequence of one o
values. An attribute is designated by its variable ID and name. When an attribute name is n
known, it may be designated by its variable ID and number in order to determine its name,
the function nc_inq_attname .

The attributes associated with a variable are typically defined immediately after the variable
created, while still in define mode. The data type, length, and value of an attribute may be cha
even when in data mode, as long as the changed attribute requires no more space than the a
as originally defined.

It is also possible to have attributes that are not associated with any variable. These are callglo-
bal attributesand are identified by usingNC_GLOBALas a variable pseudo-ID. Global attributes ar
usually related to the netCDF dataset as a whole and may be used for purposes such as p
a title or processing history for a netCDF dataset.

Operations supported on attributes are:

• Create an attribute, given its variable ID, name, data type, length, and value.
• Get attribute’s data type and length from its variable ID and name.
• Get attribute’s value from its variable ID and name.
• Copy attribute from one netCDF variable to another.
• Get name of attribute from its number.
• Rename an attribute.
• Delete an attribute.

8.1 Attribute Conventions

Names commencing with underscore (‘_’) are reserved for use by the netCDF library. Most
generic applications that process netCDF datasets assume standard attribute conventions
strongly recommended that these be followed unless there are good reasons for not doing
Below we list the names and meanings of recommended standard attributes that have prov
ful. Note that some of these (e.g.units , valid_range , scale_factor) assume numeric data and
should not be used with character data.

ni-

er-
n
its

-

l-

pe

e

units A character string that specifies the units used for the variable’s data. U
data has developed a freely-available library of routines to convert
between character string and binary forms of unit specifications and to p
form various useful operations on the binary forms. This library is used i
some netCDF applications. Using the recommended units syntax perm
data represented in conformable units to be automatically converted to
common units for arithmetic operations. See Appendix A “Units,”
page 149, for more information.

long_name A long descriptive name. This could be used for labeling plots, for exam
ple. If a variable has nolong_name attribute assigned, the variable name
should be used as a default.

valid_min A scalar specifying the minimum valid value for this variable.

valid_max A scalar specifying the maximum valid value for this variable.

valid_range A vector of two numbers specifying the minimum and maximum valid va
ues for this variable, equivalent to specifying values for bothvalid_min

andvalid_max attributes. Any of these attributes define thevalid range.
The attributevalid_range must not be defined if eithervalid_min or
valid_max is defined.

Generic applications should treat values outside thevalid range as miss-
ing. The type of eachvalid_range , valid_min andvalid_max attribute
should match the type of its variable (except that forbyte data, these can
be of a signed integral type to specify the intended range).

If neithervalid_min , valid_max norvalid_range is defined then
generic applications should define a valid range as follows. If the data ty
is byte and_FillValue is not explicitly defined, then the valid range
should include all possible values. Otherwise, the valid range should
exclude the_FillValue (whether defined explicitly or by default) as fol-
lows. If the_FillValue is positive then it defines a valid maximum, other-
wise it defines a valid minimum. For integer types, there should be a
difference of 1 between the_FillValue and this valid minimum or maxi-
mum. For floating point types, the difference should be twice the mini-
mum possible (1 in the least significant bit) to allow for rounding error.

scale_factor If present for a variable, the data are to be multiplied by this factor after th
data are read by the application that accesses the data.

s

set

at-
are
y

rt,
.

t is

e
if
o

 or

g
d

all

s

a

add_offset If present for a variable, this number is to be added to the data after it i
read by the application that accesses the data. If bothscale_factor and
add_offset attributes are present, the data are first scaled before the off
is added. The attributesscale_factor andadd_offset can be used
together to provide simple data compression to store low-resolution flo
ing-point data as small integers in a netCDF dataset. When scaled data
written, the application should first subtract the offset and then divide b
the scale factor.

Whenscale_factor andadd_offset are used for packing, the associ-
ated variable (containing the packed data) is typically of type byte or sho
whereas the unpacked values are intended to be of type float or double
The attributesscale_factor andadd_offset should both be of the type
intended for the unpacked data, e.g. float or double.

_FillValue The_FillValue attribute specifies thefill valueused to pre-fill disk space
allocated to the variable. Such pre-fill occurs unlessnofill mode is set
usingnc_set_fill . See Section 5.12 “Set Fill Mode for Writes:
nc_set_fill NF_SET_FILL ,” page 46, for details. Thefill value is
returned when reading values that were never written. If_FillValue is
defined then it should be scalar and of the same type as the variable. I
not necessary to define your own_FillValue attribute for a variable if
the defaultfill value for the type of the variable is adequate. However, us
of the default fill value for data type byte is not recommended. Note that
you change the value of this attribute, the changed value applies only t
subsequent writes; previously written data are not changed.

Generic applications often need to write a value to represent undefined
missing values. Thefill value provides an appropriate value for this pur-
pose because it is normally outside thevalid rangeand therefore treated as
missing when read by generic applications. It is legal (but not recom-
mended) for thefill value to be within thevalid range.

See Section 7.16 “Fill Values,” page 106, for more information.

missing_value This attribute is not treated in any special way by the library or conformin
generic applications, but is often useful documentation and may be use
by specific applications. Themissing_value attribute can be a scalar or
vector containing values indicating missing data. These values should
be outside thevalid range so that generic applications will treat them as
missing.

signedness Deprecated attribute, originally designed to indicate whether byte value
should be treated as signed or unsigned. The attributesvalid_min and
valid_max may be used for this purpose. For example, if you intend that
byte variable store only nonnegative values, you can usevalid_min = 0

andvalid_max = 255 . This attribute is ignored by the netCDF library.

a-
le
e

ing

n

r
ed
of

g
os-
is
ere
e
-

ibe

s
rep-
e a

ific
he

ld

to
C_format A character array providing the format that should be used by C applic
tions to print values for this variable. For example, if you know a variab
is only accurate to three significant digits, it would be appropriate to defin
theC_format attribute as"%.3g" . Thencdump utility program uses this
attribute for variables for which it is defined. The format applies to the
scaled (internal) type and value, regardless of the presence of the scal
attributesscale_factor andadd_offset .

title A global attribute that is a character array providing a succinct descriptio
of what is in the dataset.

history A global attribute for an audit trail. This is a character array with a line fo
each invocation of a program that has modified the dataset. Well-behav
generic netCDF applications should append a line containing: date, time
day, user name, program name and command arguments.

Conventions If present, ‘Conventions ’ is a global attribute that is a character array for
the name of the conventions followed by the dataset, in the form of a strin
that is interpreted as a directory name relative to a directory that is a rep
itory of documents describing sets of discipline-specific conventions. Th
permits a hierarchical structure for conventions and provides a place wh
descriptions and examples of the conventions may be maintained by th
defining institutions and groups. The conventions directory name is cur
rently interpreted relative to the directorypub/netcdf/Conventions/ on
the host machineftp.unidata.ucar.edu . Alternatively, a full URL spec-
ification may be used to name a WWW site where documents that descr
the conventions are maintained.

For example, if a group named NUWG agrees upon a set of convention
for dimension names, variable names, required attributes, and netCDF
resentations for certain discipline-specific data structures, they may stor
document describing the agreed-upon conventions in a dataset in the
NUWG/ subdirectory of the Conventions directory. Datasets that followed
these conventions would contain a globalConventions attribute with
value"NUWG".

Later, if the group agrees upon some additional conventions for a spec
subset of NUWG data, for example time series data, the description of t
additional conventions might be stored in theNUWG/Time_series/ subdi-
rectory, and datasets that adhered to these additional conventions wou
use the globalConventions attribute with value"NUWG/Time_series" ,
implying that this dataset adheres to the NUWG conventions and also
the additional NUWG time-series conventions.

en
r than

te for

o

ric
s
9,
8.2 Create an Attribute: nc_put_att_ type

The functionnc_put_att_ type adds or changes a variable attribute or global attribute of an op
netCDF dataset. If this attribute is new, or if the space required to store the attribute is greate
before, the netCDF dataset must be in define mode.

Usage

Although it’s possible to create attributes of all types, text and double attributes are adequa
most purposes.

int nc_put_att_text (int ncid, int varid, const char *name,
 size_t len, const char *tp);

int nc_put_att_uchar (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const unsigned char *up);

int nc_put_att_schar (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const signed char *cp);

int nc_put_att_short (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const short *sp);

int nc_put_att_int (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const int *ip);

int nc_put_att_long (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const long *lp);

int nc_put_att_float (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const float *fp);

int nc_put_att_double (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID of the variable to which the attribute will be assigned or
NC_GLOBAL for a global attribute.

name Attribute name. Must begin with an alphabetic character, followed by zer
or more alphanumeric characters including the underscore (‘_’). Case is sig-
nificant. Attribute name conventions are assumed by some netCDF gene
applications, e.g.,units as the name for a string attribute that gives the unit
for a netCDF variable. See Section 8.1 “Attribute Conventions,” page 10
for examples of attribute conventions.

a-

pand.
lready

F

Errors

nc_put_att_ typereturns the valueNC_NOERRif no errors occurred. Otherwise, the returned st
tus indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified netCDF type is invalid.
• The specified length is negative.
• The specified open netCDF dataset is in data mode and the specified attribute would ex
• The specified open netCDF dataset is in data mode and the specified attribute does not a

exist.
• The specified netCDF ID does not refer to an open netCDF dataset.
• The number of attributes for this variable exceedsNC_MAX_ATTRS.

Example

Here is an example usingnc_put_att_double to add a variable attribute namedvalid_range

for a netCDF variable namedrh and a global attribute namedtitle to an existing netCDF dataset
namedfoo.nc :

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
static double rh_range[] = {0.0, 100.0};/* attribute vals */
static char title[] = "example netCDF dataset";
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_redef(ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_put_att_double (ncid, rh_id, "valid_range",
 NC_DOUBLE, 2, rh_range);

xtype One of the set of predefined netCDF external data types. The type of this
parameter,nc_type , is defined in the netCDF header file. The valid netCDF
external data types areNC_BYTE, NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT,
andNC_DOUBLE. Although it’s possible to create attributes of all types,
NC_CHAR andNC_DOUBLE attributes are adequate for most purposes.

len Number of values provided for the attribute.

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to one or more values. If the type of values differs from the netCD
attribute type specified asxtype , type conversion will occur. See Section 3.3
“Type Conversion,” page 20, for details.

nc-

r.
asso-
r
ange
ot

turn
if (status != NC_NOERR) handle_error(status);
status = nc_put_att_text (ncid, NC_GLOBAL, "title",
 NC_CHAR, strlen(title), title)
if (status != NC_NOERR) handle_error(status);
 …
status = nc_enddef(ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

8.3 Get Information about an Attribute: nc_inq_att Family

This family of functions returns information about a netCDF attribute. All but one of these fu
tions require the variable ID and attribute name; the exception isnc_inq_attname . Information
about an attribute includes its type, length, name, and number. See thenc_get_att family for get-
ting attribute values.

 The functionnc_inq_attname gets the name of an attribute, given its variable ID and numbe
This function is useful in generic applications that need to get the names of all the attributes
ciated with a variable, since attributes are accessed by name rather than number in all othe
attribute functions. The number of an attribute is more volatile than the name, since it can ch
when other attributes of the same variable are deleted. This is why an attribute number is n
called an attribute ID.

The functionnc_inq_att returns the attribute’s type and length. The other functions each re
just one item of information about an attribute.

Usage

int nc_inq_att (int ncid, int varid, const char *name,
 nc_type *xtypep, size_t *lenp);

int nc_inq_atttype(int ncid, int varid, const char *name,
 nc_type *xtypep);

int nc_inq_attlen (int ncid, int varid, const char *name, size_t *lenp);

int nc_inq_attname(int ncid, int varid, int attnum, char *name);

int nc_inq_attid (int ncid, int varid, const char *name, int *attnump);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID of the attribute’s variable, orNC_GLOBAL for a global attribute.

name Attribute name. Fornc_inq_attname , this is a pointer to the location for the
returned attribute name.

r of

d

a
e
n

e

f
l,
Errors

Each function returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.
• For nc_inq_attname , the specified attribute number is negative or more than the numbe

attributes defined for the specified variable.

Example

Here is an example usingnc_inq_att to find out the type and length of a variable attribute name
valid_range for a netCDF variable namedrh and a global attribute namedtitle in an existing
netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
nc_type vr_type, t_type; /* attribute types */
int vr_len, t_len; /* attribute lengths */

xtypep Pointer to location for returned attribute type, one of the set of predefined
netCDF external data types. The type of this parameter,nc_type , is defined
in the netCDF header file. The valid netCDF external data types are
NC_BYTE, NC_CHAR, NC_SHORT, NC_INT, NC_FLOAT, andNC_DOUBLE. If this
parameter is given as ‘0’ (a null pointer), no type will be returned so no vari-
able to hold the type needs to be declared.

lenp Pointer to location for returned number of values currently stored in the
attribute. For attributes of typeNC_CHAR, you should not assume that this
includes a trailing zero byte; it doesn’t if the attribute was stored without
trailing zero byte, for example from a FORTRAN program. Before using th
value as a C string, make sure it is null-terminated. If this parameter is give
as ‘0’ (a null pointer), no length will be returned so no variable to hold this
information needs to be declared.

attnum For nc_inq_attname , attribute number. The attributes for each variable ar
numbered from 0 (the first attribute) tonatts-1 , wherenatts is the number
of attributes for the variable, as returned from a call tonc_inq_varnatts .

attnump For nc_inq_attid , pointer to location for returned attribute number that
specifies which attribute this is for this variable (or which global attribute). I
you already know the attribute name, knowing its number is not very usefu
because accessing information about an attribute requires its name.

 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_att (ncid, rh_id, "valid_range", &vr_type, &vr_len);
if (status != NC_NOERR) handle_error(status);
status = nc_inq_att (ncid, NC_GLOBAL, "title", &t_type, &t_len);
if (status != NC_NOERR) handle_error(status);

8.4 Get Attribute’s Values:nc_get_att_ type

Members of thenc_get_att_ type family of functions get the value(s) of a netCDF attribute,
given its variable ID and name.

Usage

int nc_get_att_text (int ncid, int varid, const char *name,
 char *tp);

int nc_get_att_uchar (int ncid, int varid, const char *name,
 unsigned char *up);

int nc_get_att_schar (int ncid, int varid, const char *name,
 signed char *cp);

int nc_get_att_short (int ncid, int varid, const char *name,
 short *sp);

int nc_get_att_int (int ncid, int varid, const char *name,
 int *ip);

int nc_get_att_long (int ncid, int varid, const char *name,
 long *lp);

int nc_get_att_float (int ncid, int varid, const char *name,
 float *fp);

int nc_get_att_double (int ncid, int varid, const char *name,
 double *dp);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid Variable ID of the attribute’s variable, orNC_GLOBAL for a global attribute.

name Attribute name.

ta-

esired

cate

r
old

.
u

Errors

nc_get_att_ type returns the valueNC_NOERRif no errors occurred. Otherwise, the returned s
tus indicates an error. Possible causes of errors include:

• The variable ID is invalid for the specified netCDF dataset.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.
• One or more of the attribute values are out of the range of values representable by the d

type.

Example

Here is an example usingnc_get_att_double to determine the values of a variable attribute
namedvalid_range for a netCDF variable namedrh and a global attribute namedtitle in an
existing netCDF dataset namedfoo.nc . In this example, it is assumed that we don’t know how
many values will be returned, but that we do know the types of the attributes. Hence, to allo
enough space to store them, we must first inquire about the length of the attributes.

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
int vr_len, t_len; /* attribute lengths */
double *vr_val; /* ptr to attribute values */
char *title; /* ptr to attribute values */
extern char *malloc(); /* memory allocator */

 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
/* find out how much space is needed for attribute values */
status = nc_inq_attlen (ncid, rh_id, "valid_range", &vr_len);
if (status != NC_NOERR) handle_error(status);
status = nc_inq_attlen (ncid, NC_GLOBAL, "title", &t_len);

tp, up, cp,
sp, ip, lp,
fp, or dp

Pointer to location for returned attribute value(s). All elements of the vecto
of attribute values are returned, so you must allocate enough space to h
them. For attributes of type NC_CHAR, you should not assume that the
returned values include a trailing zero byte; they won’t if the attribute was
stored without a trailing zero byte, for example from a FORTRAN program
Before using the value as a C string, make sure it is null-terminated. If yo
don’t know how much space to reserve, callnc_inq_attlen first to find out
the length of the attribute.

an

e

ill

e

set
ist

e

if (status != NC_NOERR) handle_error(status);

/* allocate required space before retrieving values */
vr_val = (double *) malloc(vr_len * sizeof(double));
title = (char *) malloc(t_len + 1); /* + 1 for trailing null */

/* get attribute values */
status = nc_get_att_double(ncid, rh_id, "valid_range", vr_val);
if (status != NC_NOERR) handle_error(status);
status = nc_get_att_text(ncid, NC_GLOBAL, "title", title);
if (status != NC_NOERR) handle_error(status);
title[t_len] = '\0'; /* null terminate */
 …

8.5 Copy Attribute from One NetCDF to Another: nc_copy_att

The functionnc_copy_att copies an attribute from one open netCDF dataset to another. It c
also be used to copy an attribute from one variable to another within the same netCDF.

Usage

int nc_copy_att (int ncid_in, int varid_in, const char *name,
 int ncid_out, int varid_out);

Errors

nc_copy_att returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The input or output variable ID is invalid for the specified netCDF dataset.
• The specified attribute does not exist.

ncid_in The netCDF ID of an input netCDF dataset from which the attribute will b
copied, from a previous call tonc_open or nc_create .

varid_in ID of the variable in the input netCDF dataset from which the attribute w
be copied, orNC_GLOBAL for a global attribute.

name Name of the attribute in the input netCDF dataset to be copied.

ncid_out The netCDF ID of the output netCDF dataset to which the attribute will b
copied, from a previous call tonc_open or nc_create . It is permissible for
the input and output netCDF IDs to be the same. The output netCDF data
should be in define mode if the attribute to be copied does not already ex
for the target variable, or if it would cause an existing target attribute to
grow.

varid_out ID of the variable in the output netCDF dataset to which the attribute will b
copied, orNC_GLOBAL to copy to a global attribute.

 is

the
o have
• The output netCDF is not in define mode and the attribute is new for the output dataset
larger than the existing attribute.

• The input or output netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_copy_att to copy the variable attributeunits from the variablerh
in an existing netCDF dataset namedfoo.nc to the variableavgrh in another existing netCDF
dataset namedbar.nc , assuming that the variableavgrh already exists, but does not yet have a
units attribute:

#include <netcdf.h>
 …
int status; /* error status */
int ncid1, ncid2; /* netCDF IDs */
int rh_id, avgrh_id; /* variable IDs */
 …
status = nc_open("foo.nc", NC_NOWRITE, ncid1);
if (status != NC_NOERR) handle_error(status);
status = nc_open("bar.nc", NC_WRITE, ncid2);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid1, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
status = nc_inq_varid (ncid2, "avgrh", &avgrh_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_redef(ncid2); /* enter define mode */
if (status != NC_NOERR) handle_error(status);
/* copy variable attribute from "rh" to "avgrh" */
status = nc_copy_att(ncid1, rh_id, "units", ncid2, avgrh_id);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_enddef(ncid2); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

8.6 Rename an Attribute:nc_rename_att

The functionnc_rename_att changes the name of an attribute. If the new name is longer than
original name, the netCDF dataset must be in define mode. You cannot rename an attribute t
the same name as another attribute of the same variable.

Usage

int nc_rename_att (int ncid, int varid, const char* name,
 const char* newname);

ncid NetCDF ID, from a previous call tonc_open or nc_create

us

 name.

DF

 is
e.
Errors

nc_rename_att returns the valueNC_NOERRif no errors occurred. Otherwise, the returned stat
indicates an error. Possible causes of errors include:

• The specified variable ID is not valid.
• The new attribute name is already in use for another attribute of the specified variable.
• The specified netCDF dataset is in data mode and the new name is longer than the old
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_rename_att to rename the variable attributeunits to Units for a
variablerh in an existing netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable id */
 …
status = nc_open("foo.nc", NC_NOWRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
/* rename attribute */
status = nc_rename_att(ncid, rh_id, "units", "Units");
if (status != NC_NOERR) handle_error(status);

8.7 Delete an Attribute:nc_del_att

The functionnc_del_att deletes a netCDF attribute from an open netCDF dataset. The netC
dataset must be in define mode.

Usage

int nc_del_att (int ncid, int varid, const char* name);

varid ID of the attribute’s variable, orNC_GLOBAL for a global attribute

name The current attribute name.

newname The new name to be assigned to the specified attribute. If the new name
longer than the current name, the netCDF dataset must be in define mod

Errors

nc_del_att returns the valueNC_NOERRif no errors occurred. Otherwise, the returned status
indicates an error. Possible causes of errors include:

• The specified variable ID is not valid.
• The specified netCDF dataset is in data mode.
• The specified attribute does not exist.
• The specified netCDF ID does not refer to an open netCDF dataset.

Example

Here is an example usingnc_del_att to delete the variable attributeUnits for a variablerh in an
existing netCDF dataset namedfoo.nc :

#include <netcdf.h>
 …
int status; /* error status */
int ncid; /* netCDF ID */
int rh_id; /* variable ID */
 …
status = nc_open("foo.nc", NC_WRITE, &ncid);
if (status != NC_NOERR) handle_error(status);
 …
status = nc_inq_varid (ncid, "rh", &rh_id);
if (status != NC_NOERR) handle_error(status);
 …
/* delete attribute */
status = nc_redef(ncid); /* enter define mode */
if (status != NC_NOERR) handle_error(status);
status = nc_del_att(ncid, rh_id, "Units");
if (status != NC_NOERR) handle_error(status);
status = nc_enddef(ncid); /* leave define mode */
if (status != NC_NOERR) handle_error(status);

ncid NetCDF ID, from a previous call tonc_open or nc_create .

varid ID of the attribute’s variable, orNC_GLOBAL for a global attribute.

name The name of the attribute to be deleted.

rstand-

vides a
 pro-
at is

ted file
thers.

,”
nder-
t make
d in
ill sup-

t for

 is very
ys of

s, and
bout

les or
ngths
te off-

s, vari-
 advan-
 that
n on a
ing
9 NetCDF File Structure and Performance
This chapter describes the file structure of a netCDF dataset in enough detail to aid in unde
ing netCDF performance issues.

NetCDF is a data abstraction for array-oriented data access and a software library that pro
concrete implementation of the interfaces that support that abstraction. The implementation
vides a machine-independent format for representing arrays. Although the netCDF file form
hidden below the interfaces, some understanding of the current implementation and associa
structure may help to make clear why some netCDF operations are more expensive than o

For a detailed description of the netCDF format, see Appendix B “File Format Specification
page 151. Knowledge of the format is not needed for reading and writing netCDF data or u
standing most efficiency issues. Programs that use only the documented interfaces and tha
no assumptions about the format will continue to work even if the netCDF format is change
the future, because any such change will be made below the documented interfaces and w
port earlier versions of the netCDF file format.

9.1 Parts of a NetCDF File

A netCDF dataset is stored as a single file comprising two parts:

• aheader, containing all the information about dimensions, attributes, and variables excep
the variable data;

• adata part, comprisingfixed-size data, containing the data for variables that don’t have an
unlimited dimension; andvariable-size data, containing the data for variables that have an
unlimited dimension.

Both the header and data parts are represented in a machine-independent form. This form
similar to XDR (eXternal Data Representation), extended to support efficient storage of arra
non-byte data.

The header at the beginning of the file contains information about the dimensions, variable
attributes in the file, including their names, types, and other characteristics. The information a
each variable includes the offset to the beginning of the variable’s data for fixed-size variab
the relative offset of other variables within a record. The header also contains dimension le
and information needed to map multidimensional indices for each variable to the appropria
sets.

This header has no usable extra space; it is only as large as it needs to be for the dimension
ables, and attributes (including all the attribute values) in the netCDF dataset. This has the
tage that netCDF files are compact, requiring very little overhead to store the ancillary data
makes the datasets self-describing. A disadvantage of this organization is that any operatio
netCDF dataset that requires the header to grow (or, less likely, to shrink), for example add
new dimensions or new variables, requires moving the data by copying it. This expense is

s
 cost

lues in
w of

oss
ts

hat do
s part

size
riable

which
edge
currently

ata
t way.
 and
ther

of data

rnal
a on

ead
brary
the use
incurred whennc_enddef is called, after a previous call tonc_redef . If you create all necessary
dimensions, variables, and attributesbeforewriting data, and avoid later additions and renaming
of netCDF components that require more space in the header part of the file, you avoid the
associated with later changing the header.

When the size of the header is changed, data in the file is moved, and the location of data va
the file changes. If another program is reading the netCDF dataset during redefinition, its vie
the file will be based on old, probably incorrect indexes. If netCDF datasets are shared acr
redefinition, some mechanism external to the netCDF library must be provided that preven
access by readers during redefinition, and causes the readers to callnc_sync before any subse-
quent access.

The fixed-size data part that follows the header contains all the variable data for variables t
not employ an unlimited dimension. The data for each variable is stored contiguously in thi
of the file. If there is no unlimited dimension, this is the last part of the netCDF file.

The record-data part that follows the fixed-size data consists of a variable number of fixed-
records, each of which contains data for all the record variables. The record data for each va
is stored contiguously in each record.

The order in which the variable data appears in each data section is the same as the order in
the variables were defined, in increasing numerical order by netCDF variable ID. This knowl
can sometimes be used to enhance data access performance, since the best data access is
achieved by reading or writing the data in sequential order.

9.2 The Extended XDR Layer

XDR is a standard for describing and encoding data and a library of functions for external d
representation, allowing programmers to encode data structures in a machine-independen
NetCDF employs an extended form of XDR for representing information in the header part
the data parts. This extended XDR is used to write portable data that can be read on any o
machine for which the library has been implemented.

The cost of using a canonical external representation for data varies according to the type
and whether the external form is the same as the machine’s native form for that type.

For some data types on some machines, the time required to convert data to and from exte
form can be significant. The worst case is reading or writing large arrays of floating-point dat
a machine that does not use IEEE floating-point as its native representation.

9.3 The I/O Layer

An I/O layer implemented much like the C standard I/O (stdio) library is used by netCDF to r
and write portable data to netCDF datasets. Hence an understanding of the standard I/O li
provides answers to many questions about multiple processes accessing data concurrently,

 to
ites are

 can
lues).

 the
tly.
fer

le

layer
and
oper-

t fur-

uters

iate
I/

e is
 effi-
ible

is

nd
of I/O buffers, and the costs of opening and closing netCDF files. In particular, it is possible
have one process writing a netCDF dataset while other processes read it. Data reads and wr
no more atomic than calls to stdiofread() andfwrite() . An nc_sync call is analogous to the
fflush call in the C standard I/O library, writing unwritten buffered data so other processes
read it;nc_sync also brings header changes up-to-date (for example, changes to attribute va
NC_SHAREis analogous to setting a stdio stream to be unbuffered withthe _IONBF flag toset-
vbuf.

As in the stdio library, flushes are also performed when “seeks” occur to a different area of
file. Hence the order of read and write operations can influence I/O performance significan
Reading data in the same order in which it was written within each record will minimize buf
flushes.

You should not expect netCDF data access to work with multiple writers having the same fi
open for writing simultaneously.

It is possible to tune an implementation of netCDF for some platforms by replacing the I/O
with a different platform-specific I/O layer. This may change the similarities between netCDF
standard I/O, and hence characteristics related to data sharing, buffering, and the cost of I/O
ations.

The distributed netCDF implementation is meant to be portable. Platform-specific ports tha
ther optimize the implementation for better I/O performance are practical in some cases.

9.4 UNICOS Optimization

As was mentioned in the previous section, it is possible to replace the I/O layer in order to
increase I/O efficiency. This has been done for UNICOS, the operating system of Cray comp
similar to the Cray Y-MP.

Additionally, it is possible for the user to obtain even greater I/O efficiency through appropr
setting of theNETCDF_FFIOSPECenvironment variable. This variable specifies the Flexible File
O buffers for netCDF I/O when executing under the UNICOS operating system (the variabl
ignored on other operating systems). An appropriate specification can greatly increase the
ciency of netCDF I/O—to the extent that it can surpass default FORTRAN binary I/O. Poss
specifications include the following:

bufa:336:2 2, asynchronous, I/O buffers of 336 blocks each (i.e., double buffering). Th
is the default specification and favors sequential I/O.

cache:256:8 8, synchronous, 256-block buffers. This favors larger random accesses.

cachea:256:8
:2

8, asynchronous, 256-block buffers with a 2 block read-ahead/write-behi
factor. This also favors larger random accesses.

ech-
g

r-

is
s as

56
of
s

de.
All of the options/configurations supported in CRI’s FFIO library are available through this m
anism. We recommend that you look at CRI’s I/O optimization guide for information on usin
FFIO to it’s fullest. This mechanism is also compatible with CRI’s EIE I/O library.

Tuning theNETCDF_FFIOSPEC variable to a program’s I/O pattern can dramatically improve pe
formance. Speedups of two orders of magnitude have been seen.

cachea:8:256
:0

256, asynchronous, 8-block buffers without read-ahead/write-behind. Th
favors many smaller pages without read-ahead for more random accesse
typified by slicing netCDF arrays.

cache:8:256,
cachea.sds:1
024:4:1

This is a two layer cache. The first (synchronous) layer is composed of 2
8-block buffers in memory, the second (asynchronous) layer is composed
4 1024-block buffers on the SSD. This scheme works well when accesse
proceed through the dataset in random waves roughly 2x1024-blocks wi

ys is
. Cur-

 the

ding

ion)

 and

es are
l soft-

k

 (
10 NetCDF Utilities
One of the primary reasons for using the netCDF interface for applications that deal with arra
to take advantage of higher-level netCDF utilities and generic applications for netCDF data
rently two netCDF utilities are available as part of the netCDF software distribution:

• ncdump reads a netCDF dataset and prints a textual representation of the information in
dataset

• ncgen reads a textual representation of a netCDF dataset and generates the correspon
binary netCDF file or a C or FORTRAN program to create the netCDF dataset

Two more general-purpose netCDF utilities are available as part of the FAN (File Array Notat
package:

• ncmeta prints selected metadata from one or more netCDF datasets
• ncrob performs various operations (copy, sum, mean, max, min, ...) with data read from

printed or written to text files and/or selected parts of netCDF variables or attributes.

For more information on FAN, seehttp://www.unidata.ucar.edu/packages/netcdf/

fan_utils.html .

Users have contributed other netCDF utilities, and various visualization and analysis packag
available that access netCDF data. For an up-to-date list of freely-available and commercia
ware that can access or manipulate netCDF data, see the NetCDF Software list,http://

www.unidata.ucar.edu/packages/netcdf/software.html .

This chapter describes thencgen andncdump utilities. These two tools convert between binary
netCDF datasets and a text representation of netCDF datasets. The output ofncdump and the input
to ncgen is a text description of a netCDF dataset in a tiny language known as CDL (networ
Common data form Description Language).

10.1 CDL Syntax

Below is an example of CDL, describing a netCDF dataset with several named dimensionslat ,
lon , time), variables (z, t , p, rh , lat , lon , time), variable attributes (units , _FillValue ,
valid_range), and some data.

netcdf foo { // example netCDF specification in CDL

dimensions:
lat = 10, lon = 5, time = unlimited;

variables:
 int lat(lat), lon(lon), time(time);
 float z(time,lat,lon), t(time,lat,lon);
 double p(time,lat,lon);
 int rh(time,lat,lon);

freely

riable

nsion
sion

ame,
ssoci-

able are
e the
sion it

butes
lid val-
s of

t to vari-
.

name

f data
e

 or
 lat:units = "degrees_north";
 lon:units = "degrees_east";
 time:units = "seconds";
 z:units = "meters";
 z:valid_range = 0., 5000.;
 p:_FillValue = -9999.;
 rh:_FillValue = -1;

data:
 lat = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90;
 lon = -140, -118, -96, -84, -52;
}

All CDL statements are terminated by a semicolon. Spaces, tabs, and newlines can be used
for readability. Comments may follow the double slash characters// on any line.

A CDL description consists of three optional parts: dimensions, variables, and data. The va
part may contain variable declarations and attribute assignments.

A dimension is used to define the shape of one or more of the multidimensional variables
described by the CDL description. A dimension has a name and a length. At most one dime
in a CDL description can have the unlimited length, which means a variable using this dimen
can grow to any length (like a record number in a file).

A variable represents a multidimensional array of values of the same type. A variable has a n
a data type, and a shape described by its list of dimensions. Each variable may also have a
ated attributes (see below) as well as data values. The name, data type, and shape of a vari
specified by its declaration in the variable section of a CDL description. A variable may hav
same name as a dimension; by convention such a variable contains coordinates of the dimen
names.

An attribute contains information about a variable or about the whole netCDF dataset. Attri
may be used to specify such properties as units, special values, maximum and minimum va
ues, and packing parameters. Attribute information is represented by single values or array
values. For example,units is an attribute represented by a character array such ascelsius . An
attribute has an associated variable, a name, a data type, a length, and a value. In contras
ables that are intended for data, attributes are intended for ancillary data (data about data)

In CDL, an attribute is designated by a variable and attribute name, separated by a colon (‘: ’). It is
possible to assign global attributes to the netCDF dataset as a whole by omitting the variable
and beginning the attribute name with a colon (‘: ’). The data type of an attribute in CDL is
derived from the type of the value assigned to it. The length of an attribute is the number o
values or the number of characters in the character string assigned to it. Multiple values ar
assigned to non-character attributes by separating the values with commas (‘, ’). All values
assigned to an attribute must be of the same type.

CDL names for variables, attributes, and dimensions may be any combination of alphabetic
numeric characters as well as ‘_’ and ‘- ’ characters, but names beginning with ‘_’ are reserved for

any
mes
CDL,

The

r multi-
rder is

with
ns are
 sup-

s.

per or

te
use by the library. Case is significant in CDL names. The netCDF library does not enforce
restrictions on netCDF names, so it is possible (though unwise) to define variables with na
that are not valid CDL names. The names for the primitive data types are reserved words in
so the names of variables, dimensions, and attributes must not be type names.

The optional data section of a CDL description is where netCDF variables may be initialized.
syntax of an initialization is simple:

variable = value_1, value_2, …;

The comma-delimited list of constants may be separated by spaces, tabs, and newlines. Fo
dimensional arrays, the last dimension varies fastest. Thus, row-order rather than column o
used for matrices. If fewer values are supplied than are needed to fill a variable, it is extended
the fill value. The types of constants need not match the type declared for a variable; coercio
done to convert integers to floating point, for example. All meaningful type conversions are
ported.

A special notation for fill values is supported: the_ character designates a fill value for variable

10.2 CDL Data Types

The CDL data types are:

Except for the added data-typebyte and the lack of the type qualifierunsigned , CDL supports
the same primitive data types as C. In declarations, type names may be specified in either up
lower case.

Thebyte type differs from thechar type in that it is intended for eight-bit data, and the zero by
has no special significance, as it may for character data. Thencgen utility convertsbyte declara-
tions tochar declarations in the output C code and toBYTE, INTEGER*1, or similar platform-spe-
cific declaration in output FORTRAN code.

char Characters.

byte Eight-bit integers.

short 16-bit signed integers.

int 32-bit signed integers.

long (Deprecated, currently synonymous with int)

float IEEE single-precision floating point (32 bits).

real (Synonymous with float).

double IEEE double-precision floating point (64 bits).

tation

senta-

ral
ed
ong
suf-

e

 as a
arac-
le-

rary
Theshort type holds values between -32768 and 32767. Thencgen utility convertsshort decla-
rations toshort declarations in the output C code and toINTEGER*2 declaration in output FOR-
TRAN code.

The int type can hold values between -2147483648 and 2147483647. Thencgen utility converts
int declarations toint declarations in the output C code and toINTEGER declarations in output
FORTRAN code. In CDL declarationsinteger andlong are accepted as synonyms forint .

The float type can hold values between about -3.4+38 and 3.4+38, with external represen
as 32-bit IEEE normalized single-precision floating-point numbers. Thencgen utility converts
float declarations tofloat declarations in the output C code and toREAL declarations in output
FORTRAN code. In CDL declarationsreal is accepted as a synonym forfloat .

Thedouble type can hold values between about -1.7+308 and 1.7+308, with external repre
tion as 64-bit IEEE standard normalized double-precision, floating-point numbers. Thencgen

utility convertsdouble declarations todouble declarations in the output C code and toDOUBLE

PRECISION declarations in output FORTRAN code.

10.3 CDL Notation for Data Constants

This section describes the CDL notation for constants.

Attributes are initialized in thevariables section of a CDL description by providing a list of
constants that determines the attribute’s type and length. (In the C and FORTRAN procedu
interfaces to the netCDF library, the type and length of an attribute must be explicitly provid
when it is defined.) CDL defines a syntax for constant values that permits distinguishing am
different netCDF types. The syntax for CDL constants is similar to C syntax, except that type
fixes are appended toshort s andfloat s to distinguish them fromint s anddouble s.

A byte constant is represented by a single character or multiple character escape sequenc
enclosed in single quotes. For example:

'a' // ASCII a
'\0' // a zero byte
'\n' // ASCII newline character
'\33' // ASCII escape character (33 octal)
'\x2b' // ASCII plus (2b hex)
'\376' // 377 octal = -127 (or 254) decimal

Character constants are enclosed in double quotes. A character array may be represented
string enclosed in double quotes. Multiple strings are concatenated into a single array of ch
ters, permitting long character arrays to appear on multiple lines. To support multiple variab
length string values, a conventional delimiter such as ‘, ’ may be used, but interpretation of any
such convention for a string delimiter must be implemented in software above the netCDF lib
layer. The usual escape conventions for C strings are honored. For example:

"a" // ASCII ‘a’
"Two\nlines\n" // a 10-character string with two embedded newlines

xam-

ci-

-

 dig-
"a bell:\007" // a string containing an ASCII bell
"ab","cde" // the same as "abcde"

The form of ashort constant is an integer constant with an ‘s ’ or ‘S’ appended. If ashort con-
stant begins with ‘0’, it is interpreted as octal. When it begins with ‘0x ’, it is interpreted as a hexa-
decimal constant. For example:

2s // a short 2
0123s // octal
0x7ffs // hexadecimal

The form of anint constant is an ordinary integer constant. If anint constant begins with ‘0’, it
is interpreted as octal. When it begins with ‘0x’, it is interpreted as a hexadecimal constant. E
ples of validint constants include:

-2
0123 // octal
0x7ff // hexadecimal
1234567890L // deprecated, uses old long suffix

The float type is appropriate for representing data with about seven significant digits of pre
sion. The form of afloat constant is the same as a C floating-point constant with an ‘f ’ or ‘F’
appended. A decimal point is required in a CDLfloat to distinguish it from an integer. For exam
ple, the following are all acceptablefloat constants:

-2.0f
3.14159265358979f // will be truncated to less precision
1.f
.1f

Thedouble type is appropriate for representing floating-point data with about 16 significant
its of precision. The form of adouble constant is the same as a C floating-point constant. An
optional ‘d’ or ‘ D’ may be appended. A decimal point is required in a CDLdouble to distinguish
it from aninteger . For example, the following are all acceptable double constants:

-2.0
3.141592653589793
1.0e-20
1.d

10.4 ncgen

Thencgen tool generates a netCDF file or a C or FORTRAN program that creates a netCDF
dataset. If no options are specified in invokingncgen , the program merely checks the syntax of
the CDL input, producing error messages for any violations of CDL syntax.

UNIX syntax for invokingncgen :

ncgen [-b] [-o netcdf-file] [-c] [-f] [-n] [input-file]

at

tput,

e

n-

e

tch-

ll
where:

Examples

Check the syntax of the CDL filefoo.cdl :

ncgen foo.cdl

From the CDL filefoo.cdl , generate an equivalent binary netCDF file namedbar.nc :

ncgen -o bar.nc foo.cdl

From the CDL filefoo.cdl , generate a C program containing netCDF function invocations th
will create an equivalent binary netCDF dataset:

ncgen -c foo.cdl > foo.c

10.5 ncdump

Thencdump tool generates the CDL text representation of a netCDF dataset on standard ou
optionally excluding some or all of the variable data in the output. The output fromncdump is

-b Create a (binary) netCDF file. If the ‘-o ’ option is absent, a default file
name will be constructed from the netCDF name (specified after the
netcdf keyword in the input) by appending the ‘.nc ’ extension.Warn-
ing: if a file already exists with the specified name it will be overwrit-
ten.

-o netcdf-file Name for the netCDF file created. If this option is specified, it implies th
‘ -b ’ option. (This option is necessary because netCDF files are direct-
access files created with seek calls, and hence cannot be written to sta
dard output.)

-c Generate C source code that will create a netCDF dataset matching th
netCDF specification. The C source code is written to standard output.
This is only useful for relatively small CDL files, since all the data is
included in variable initializations in the generated program.

-f Generate FORTRAN source code that will create a netCDF dataset ma
ing the netCDF specification. The FORTRAN source code is written to
standard output. This is only useful for relatively small CDL files, since a
the data is included in variable initializations in the generated program.

-n Deprecated. Like the ‘-b ’ option, except creates a netCDF file with a
‘ .cdf ’ extension instead of an ‘.nc ’ extension, in the absence of an output
filename specified by the ‘-o ’ option. This option is only supported for
backward compatibility.

n
tionally,

 over-

e
ate

)
es.
his
d

t
e
.

to

g
an-
intended to be acceptable as input toncgen . Thusncdump andncgen can be used as inverses to
transform data representation between binary and text representations.

ncdump may also be used as a simple browser for netCDF datasets, to display the dimensio
names and lengths; variable names, types, and shapes; attribute names and values; and op
the values of data for all variables or selected variables in a netCDF dataset.

ncdump defines a default format used for each type of netCDF variable data, but this can be
ridden if aC_format attribute is defined for a netCDF variable. In this case,ncdump will use the
C_format attribute to format values for that variable. For example, if floating-point data for th
netCDF variableZ is known to be accurate to only three significant digits, it might be appropri
to use this variable attribute:

Z:C_format = "%.3g"

ncdump uses ‘_’ to represent data values that are equal to the_FillValue attribute for a variable,
intended to represent data that has not yet been written. If a variable has no_FillValue attribute,
the default fill value for the variable type is used unless the variable is of byte type.

UNIX syntax for invokingncdump:

ncdump [-c | -h] [-v var1,…] [-b lang] [-f lang]
[-l len] [-p fdig[,ddig]] [-n name] [input-file]

where:

 -c Show the values ofcoordinatevariables (variables that are also dimensions
as well as the declarations of all dimensions, variables, and attribute valu
Data values of non-coordinate variables are not included in the output. T
is often the most suitable option to use for a brief look at the structure an
contents of a netCDF dataset.

-h Show only theheaderinformation in the output, that is, output only the dec-
larations for the netCDF dimensions, variables, and attributes of the inpu
file, but no data values for any variables. The output is identical to using th
‘ -c ’ option except that the values of coordinate variables are not included
(At most one of ‘-c ’ or ‘ -h ’ options may be present.)

-v var1,… The output will include data values for the specified variables, in addition
the declarations of all dimensions, variables, and attributes. One or more
variables must be specified by name in the comma-delimited list followin
this option. The list must be a single argument to the command, hence c
not contain blanks or other white space characters. The named variables
must be valid netCDF variables in the input-file. The default, without this
option and in the absence of the ‘-c ’ or ‘ -h ’ options, is to include data val-
ues forall variables in the output.

f
-

rst
e

t

ry-
nly

ed.

g
. If

-

5
-
,
le

set
-b lang A brief annotation in the form of a CDL comment (text beginning with the
characters ‘// ’) will be included in the data section of the output for each
‘row’ of data, to help identify data values for multidimensional variables. I
lang begins with ‘C’ or ‘c ’, then C language conventions will be used (zero
based indices, last dimension varying fastest). Iflangbegins with ‘F’ or ‘ f ’,
then FORTRAN language conventions will be used (one-based indices, fi
dimension varying fastest). In either case, the data will be presented in th
same order; only the annotations will differ. This option may be useful for
browsing through large volumes of multidimensional data.

-f lang Full annotations in the form of trailing CDL comments (text beginning with
the characters ‘// ’) for every data value (except individual characters in
character arrays) will be included in the data section. Iflangbegins with ‘C’
or ‘c ’, then C language conventions will be used (zero-based indices, las
dimension varying fastest). Iflang begins with ‘F’ or ‘ f ’, then FORTRAN
language conventions will be used (one-based indices, first dimension va
ing fastest). In either case, the data will be presented in the same order; o
the annotations will differ. This option may be useful for piping data into
other filters, since each data value appears on a separate line, fully identifi
(At most one of ‘-b ’ or ‘ -f ’ options may be present.)

-l len Changes the default maximum line length (80) used in formatting lists of
non-character data values.

-p float_digits[,double_digits]

Specifies default precision (number of significant digits) to use in displayin
floating-point or double precision data values for attributes and variables
specified, this value overrides the value of theC_format attribute, if any, for
a variable. Floating-point data will be displayed withfloat_digitssignificant
digits. If double_digits is also specified, double-precision values will be dis
played with that many significant digits. In the absence of any ‘-p ’ specifica-
tions, floating-point and double-precision data are displayed with 7 and 1
significant digits respectively. CDL files can be made smaller if less preci
sion is required. If both floating-point and double precisions are specified
the two values must appear separated by a comma (no blanks) as a sing
argument to the command.

-n name CDL requires a name for a netCDF dataset, for use by ‘ncgen -b ’ in gener-
ating a default netCDF dataset name. By default,ncdump constructs this
name from the last component of the file name of the input netCDF data
by stripping off any extension it has. Use the ‘-n ’ option to specify a differ-
ent name. Although the output file name used by ‘ncgen -b ’ can be speci-
fied, it may be wise to havencdump change the default name to avoid
inadvertently overwriting a valuable netCDF dataset when usingncdump,
editing the resulting CDL file, and using ‘ncgen -b ’ to generate a new
netCDF dataset from the edited CDL file.

CDL
Examples

Look at the structure of the data in the netCDF datasetfoo.nc :

ncdump -c foo.nc

Produce an annotated CDL version of the structure and data in the netCDF datasetfoo.nc , using
C-style indexing for the annotations:

ncdump -b c foo.nc > foo.cdl

Output data for only the variablesuwind andvwind from the netCDF datasetfoo.nc , and show
the floating-point data with only three significant digits of precision:

ncdump -v uwind,vwind -p 3 foo.nc

Produce a fully-annotated (one data value per line) listing of the data for the variableomega, using
FORTRAN conventions for indices, and changing the netCDF dataset name in the resulting
file to omega:

ncdump -v omega -f fortran -n omega foo.nc > Z.cdl

-

DF. A

freely-
le-
, and

contri-
at for

ss, and

s with

t read-

iple
DF
e data.
F

11 Answers to Some Frequently Asked Ques
tions
This chapter contains answers to some of the most frequently asked questions about netC
more comprehensive and up-to-date FAQ document for netCDF is maintained athttp://

www.unidata.ucar.edu/packages/netcdf/faq.html .

What Is netCDF?

NetCDF (network Common Data Form) is an interface for array-oriented data access and a
distributed collection of software libraries for C, FORTRAN, C++, and Perl that provide imp
mentations of the interface. The netCDF software was developed by Glenn Davis, Russ Rew
Steve Emmerson at the Unidata Program Center in Boulder, Colorado, and augmented by
butions from other netCDF users. The netCDF libraries define a machine-independent form
representing arrays. Together, the interface, libraries, and format support the creation, acce
sharing of array-oriented data.

NetCDF data is:

• Self-describing. A netCDF dataset includes information about the data it contains.
• portable. A netCDF dataset is represented in a form that can be accessed by computer

different ways of storing integers, characters, and floating-point numbers.
• Direct-access. A small subset of a large dataset may be accessed efficiently, without firs

ing through all the preceding data.
• Appendable. Data can be appended to a netCDF dataset along one dimension for mult

variables without copying the dataset or redefining its structure. The structure of a netC
dataset may also be changed, though in some cases this is implemented by copying th

• Sharable. One writer and multiple readers may simultaneously access the same netCD
dataset.

How do I get the netCDF software package?

Source distributions are available via anonymous FTP from the directory

ftp://ftp.unidata.ucar.edu/pub/netcdf/ .

Files in that directory include:

Binary distributions for some platforms are available from the directory

netcdf.tar.Z A compressed tar file of source code for the latest general release.

netcdf-beta.tar.Z The current beta-test release.

the

ser’s

ovide

ssage

resses)
ome

nogra-
-imag-
ftp://ftp.unidata.ucar.edu/pub/binary/

Source for the Perl interface is available as a separate package, via anonymous FTP from
directory

ftp://ftp.unidata.ucar.edu/pub/netcdf-perl/ .

Is there any access to netCDF information on the World Wide Web?

Yes, the latest version of this FAQ document as well as a hypertext version of the NetCDF U
Guide and other information about netCDF are available from

http://www.unidata.ucar.edu/packages/netcdf .

What has changed since the previous release?

Version 3 keeps the same format, but introduces new interfaces for C and FORTRAN that pr
automatic type conversion and improved type safety. For more details, see:

http://www.unidata.ucar.edu/packages/netcdf/release-notes.html .

Is there a mailing list for netCDF discussions and questions?

Yes. For information about the mailing list and how to subscribe or unsubscribe, send a me
to majordomo@unidata.ucar.edu with no subject and with the following line in the body of the
message:

info netcdfgroup

Who else uses netCDF?

The netCDF mailing list has almost 500 addresses (some of which are aliases to more add
in fifteen countries. Several groups have adopted netCDF as a standard way to represent s
forms of array-oriented data, including groups in the atmospheric sciences, hydrology, ocea
phy, environmental modeling, geophysics, chromatography, mass spectrometry, and neuro
ing.

A description of some of the projects and groups that have used netCDF is available from

http://www.unidata.ucar.edu/packages/netcdf/usage.html .

the
plica-
for a

rfaces,
 the
by

ting

n
re that
What is the physical format for a netCDF files?

See Chapter 9 “NetCDF File Structure and Performance,” page 131, for an explanation of
physical structure of netCDF data at a high enough level to make clear the performance im
tions of different data organizations. See Appendix B “File Format Specification,” page 151,
detailed specification of the file format.

Programs that access netCDF data should perform all access through the documented inte
rather than relying on the physical format of netCDF data. That way, any future changes to
format will not require changes to programs, since any such changes will be accompanied
changes in the library to support both the old and new versions of the format.

What does netCDF run on?

The current version of netCDF has been tested successfully on the following platforms:

• AIX-4.1
• HPUX-9.05
• IRIX-5.3
• IRIX64-6.1
• MSDOS (using gcc, f2c, and GNU make)
• OSF1-3.2
• OpenVMS-6.2
• OS/2 2.1
• SUNOS-4.1.4
• SUNOS-5.5
• ULTRIX-4.5
• UNICOS-8
• Windows NT-3.51

What other software is available for netCDF data?

Utilities available in the current netCDF distribution from Unidata arencdump, for converting
netCDF datasets to an ASCII human-readable form, andncgen for converting from the ASCII
human-readable form back to a binary netCDF file or a C or FORTRAN program for genera
the netCDF dataset.

Several commercial and freely available analysis and data visualization packages have bee
adapted to access netCDF data. More information about these packages and other softwa
can be used to manipulate or display netCDF data is available from

http://www.unidata.ucar.edu/packages/netcdf/software.html .

 for-

rch of

-
uired
than

 famil-

on-
 for-
gram

is
ata
What other formats are available for scientific data?

TheScientific Data Format Information FAQ, available fromhttp://fits.cv.nrao.edu/traf-

fic/scidataformats/faq.html , provides a good description of other access interfaces and
mats for array-oriented data, including CDF and HDF.

How do I make a bug report?

If you find a bug, send a description tosupport@unidata.ucar.edu . This is also the address to
use for questions or discussions about netCDF that are not appropriate for the entirenetcdfgroup

mailing list.

How do I search through past problem reports?

A search form is available at the bottom of the netCDF home page providing a full-text sea
the support questions and answers about netCDF provided by Unidata support staff.

How does the C++ interface differ from the C interface?

It provides all the functionality of the C interface (except for the mapped array access of
nc_put_varm_ type andnc_get_varm_ type). With the C++ interface (http://www.uni-

data.ucar.edu/packages/netcdf/cxxdoc_toc.html) no IDs are needed for netCDF compo
nents, there is no need to specify types when creating attributes, and less indirection is req
for dealing with dimensions. However, the C++ interface is less mature and less-widely used
the C interface, and the documentation for the C++ interface is less extensive, assuming a
iarity with the netCDF data model and the C interface.

How does the FORTRAN interface differ from the C interface?

It provides all the functionality of the C interface. The FORTRAN interface uses FORTRAN c
ventions for array indices, subscript order, and strings. There is no difference in the on-disk
mat for data written from the different language interfaces. Data written by a C language pro
may be read from a FORTRAN program and vice-versa.

How does the Perl interface differ from the C interface?

It provides all the functionality of the C interface. The Perl interface (http://www.uni-

data.ucar.edu/packages/netcdf-perl/) uses Perl conventions for arrays and strings. There
no difference in the on-disk format for data written from the different language interfaces. D
written by a C language program may be read from a Perl program and vice-versa.

nd
units
ever-

y and

tegral

tamp

 zero

ing

.g.

and-

es, and
Appendix A Units
The Unidata Program Center has developed a units library to convert between formatted a
binary forms of units specifications and perform unit algebra on the binary form. Though the
library is self-contained and there is no dependency between it and the netCDF library, it is n
theless useful in writing generic netCDF programs and we suggest you obtain it. The librar
associated documentation is available fromhttp://www.unidata.ucar.edu/packages/udun-

its/ .

The following are examples of units strings that can be interpreted by theutScan() function of
the Unidata units library:

10 kilogram.meters/seconds2
10 kg-m/sec2
10 kg m/s^2
10 kilogram meter second-2
(PI radian)2
degF
100rpm
geopotential meters
33 feet water
milliseconds since 1992-12-31 12:34:0.1 -7:00

A unit is specified as an arbitrary product of constants and unit-names raised to arbitrary in
powers. Division is indicated by a slash ‘/ ’. Multiplication is indicated by white space, a period
‘ . ’, or a hyphen ‘- ’. Exponentiation is indicated by an integer suffix or by the exponentiation
operators ‘̂ ’ and ‘** ’. Parentheses may be used for grouping and disambiguation. The time s
in the last example is handled as a special case.

Arbitrary Galilean transformations (i.e.,y = ax + b) are allowed. In particular, temperature con-
versions are correctly handled. The specification:

degF @ 32

indicates a Fahrenheit scale with the origin shifted to thirty-two degrees Fahrenheit (i.e., to
Celsius). Thus, the Celsius scale is equivalent to the following unit:

1.8 degF @ 32

Note that the origin-shift operation takes precedence over multiplication. In order of increas
precedence, the operations are division, multiplication, origin-shift, and exponentiation.

utScan() understands all the SI prefixes (e.g. “mega” and “milli”) plus their abbreviations (e
“M” and “m”)

The functionutPrint() always encodes a unit specification one way. To reduce misunderst
ings, it is recommended that this encoding style be used as the default. In general, a unit is
encoded in terms of basic units, factors, and exponents. Basic units are separated by spac

 as fol-

 at

o ini-
ls.

er as
ant

nal

ote

with
any exponent directly appends its associated unit. The above examples would be encoded
lows:

10 kilogram meter second-2
9.8696044 radian2
0.555556 kelvin @ 255.372
10.471976 radian second-1
9.80665 meter2 second-2
98636.5 kilogram meter-1 second-2
0.001 seconds since 1992-12-31 19:34:0.1000 UTC

(Note that the Fahrenheit unit is encoded as a deviation, in fractional kelvins, from an origin
255.372 kelvin, and that the time in the last example has been referenced to UTC.)

The database for the units library is a formatted file containing unit definitions and is used t
tialize this package. It is the first place to look to discover the set of valid names and symbo

The format for the units-file is documented internally and the file may be modified by the us
necessary. In particular, additional units and constants may be easily added (including vari
spellings of existing units or constants).

utScan() is case-sensitive. If this causes difficulties, you might try making appropriate additio
entries to the units-file.

Some unit abbreviations in the default units-file might seem counterintuitive. In particular, n
the following:

For additional information on this units library, please consult the manual pages that come
the distribution.

For Use Not Which Instead Means

Celsius Celsius C coulomb

gram gram g <standard free fall>

gallon gallon gal <acceleration>

radian radian rad <absorbed dose>

Newton newton or N nt nit (unit of photometry)

onal

rences
Appendix B File Format Specification
This appendix specifies the netCDF file format version 1. This format will be in use at least
through netCDF library version 3.0.

The format is first presented formally, using a BNF grammar notation. In the grammar, opti
components are enclosed between braces (‘[‘ and ‘] ’). Comments follow ‘// ’ characters. Nonter-
minals are in lower case, and terminals are in upper case. A sequence of zero or more occur
of an entity are denoted by ‘[entity …] ’.

The Format in Detail

netcdf_file := header data

header := magic numrecs dim_array gatt_array var_array

magic := 'C' 'D' 'F' VERSION_BYTE

VERSION_BYTE := '\001' // the file format version number

numrecs := NON_NEG

dim_array := ABSENT | NC_DIMENSION nelems [dim …]

gatt_array := att_array // global attributes

att_array := ABSENT | NC_ATTRIBUTE nelems [attr …]

var_array := ABSENT | NC_VARIABLE nelems [var …]

ABSENT := ZERO ZERO // Means array not present (equivalent to
 // nelems == 0).

nelems := NON_NEG // number of elements in following sequence

dim := name dim_length

name := string

dim_length := NON_NEG // If zero, this is the record dimension.
 // There can be at most one record dimension.

attr := name nc_type nelems [values]

nc_type := NC_BYTE | NC_CHAR | NC_SHORT | NC_INT | NC_FLOAT | NC_DOUBLE

var := name nelems [dimid …] vatt_array nc_type vsize begin
 // nelems is the rank (dimensionality) of the
 // variable; 0 for scalar, 1 for vector, 2 for
 // matrix, …

vatt_array := att_array // variable-specific attributes

dimid := NON_NEG // Dimension ID (index into dim_array) for
 // variable shape. We say this is a “record
 // variable” if and only if the first
 // dimension is the record dimension.

vsize := NON_NEG // Variable size. If not a record variable,
 // the amount of space, in bytes, allocated to
 // that variable’s data. This number is the
 // product of the dimension lengths times the
 // size of the type, padded to a four byte
 // boundary. If a record variable, it is the
 // amount of space per record. The netCDF
 // “record size” is calculated as the sum of
 // the vsize’s of the record variables.

begin := NON_NEG // Variable start location. The offset in
 // bytes (seek index) in the file of the
 // beginning of data for this variable.

data := non_recs recs

non_recs := [values …] // Data for first non-record var, second
 // non-record var, …

recs := [rec …] // First record, second record, …

rec := [values …] // Data for first record variable for record
 // n, second record variable for record n, …
 // See the note below for a special case.

values := [bytes] | [chars] | [shorts] | [ints] | [floats] | [doubles]

string := nelems [chars]

bytes := [BYTE …] padding

chars := [CHAR …] padding

shorts := [SHORT …] padding

ints := [INT …]

floats := [FLOAT …]

doubles := [DOUBLE …]

padding := <0, 1, 2, or 3 bytes to next 4-byte boundary>
 // In header, padding is with 0 bytes. In
 // data, padding is with variable’s fill-value.

NON_NEG := <INT with non-negative value>

ft-
ZERO := <INT with zero value>

BYTE := <8-bit byte>

CHAR := <8-bit ACSII/ISO encoded character>

SHORT := <16-bit signed integer, Bigendian, two’s complement>

INT := <32-bit signed integer, Bigendian, two’s complement>

FLOAT := <32-bit IEEE single-precision float, Bigendian>

DOUBLE := <64-bit IEEE double-precision float, Bigendian>

// tags are 32-bit INTs
NC_BYTE := 1 // data is array of 8 bit signed integer
NC_CHAR := 2 // data is array of characters, i.e., text
NC_SHORT := 3 // data is array of 16 bit signed integer
NC_INT := 4 // data is array of 32 bit signed integer
NC_FLOAT := 5 // data is array of IEEE single precision float
NC_DOUBLE := 6 // data is array of IEEE double precision float
NC_DIMENSION := 10
NC_VARIABLE := 11
NC_ATTRIBUTE := 12

Computing File Offsets

To calculate the offset (position within the file) of a specified data value, letexternal_sizeofbe the
external size in bytes of one data value of the appropriate type for the specified variable,nc_type:

NC_BYTE 1
NC_CHAR 1
NC_SHORT 2
NC_INT 4
NC_FLOAT 4
NC_DOUBLE 8

On a call to nc_open (or nc_enddef), scan through the array of variables, denotedvar_array
above, and sum thevsize fields of “record” variables to computerecsize.

Form the products of the dimension lengths for the variable from right to left, skipping the le
most (record) dimension for record variables, and storing the results in aproduct array for each
variable. For example:

Non-record variable:

 dimension lengths: [5 3 2 7]
 product: [210 42 14 7]

Record variable:

ize,

r

ions,
file is

s it
-
utes,

mand
 dimension lengths: [0 2 9 4]
 product: [0 72 36 4]

At this point, the leftmost product, when rounded up to the next multiple of 4, is the variable s
vsize, in the grammar above. For example, in the non-record variable above, the value of thevsize
field is 212 (210 rounded up to a multiple of 4). For the record variable, the value ofvsize is just
72, since this is already a multiple of 4.

Let coordbe an array of the coordinates of the desired data value, andoffsetbe the desired result.
Thenoffsetis just the file offset of the first data value of the desired variable (itsbeginfield) added
to the inner product of thecoordandproduct vectors times the size, in bytes, of each datum fo
the variable. Finally, if the variable is a record variable, the product of the record number,
‘coord[0] ’, and the record size,recsize is added to yield the finaloffset value.

In pseudo-C code, here’s the calculation ofoffset:

for (innerProduct = i = 0; i < var.rank; i++)
 innerProduct += product[i] * coord[i]
offset = var.begin;
offset += external_sizeof * innerProduct
if(IS_RECVAR(var))
 offset += coord[0] * recsize;

So, to get the data value (in external representation):

lseek(fd, offset, SEEK_SET);
read(fd, buf, external_sizeof);

A special case: Where there is exactly one record variable, we drop the restriction that each
record be four-byte aligned, so in this case there is no record padding.

Examples

By using the grammar above, we can derive the smallest valid netCDF file, having no dimens
no variables, no attributes, and hence, no data. A CDL representation of the empty netCDF

netcdf empty { }

This empty netCDF file has 32 bytes, as you may verify by using ‘ncgen -b empty.cdl ’ to gen-
erate it from the CDL representation. It begins with the four-byte “magic number” that identifie
as a netCDF version 1 file: ‘C’, ‘D’, ‘F’, ‘\001’. Following are seven 32-bit integer zeros repre
senting the number of records, an empty array of dimensions, an empty array of global attrib
and an empty array of variables.

Below is an (edited) dump of the file produced on a big-endian machine using the Unix com

od -xcs empty.nc

hexa-
up of
 the
Each 16-byte portion of the file is displayed with 4 lines. The first line displays the bytes in
decimal. The second line displays the bytes as characters. The third line displays each gro
two bytes interpreted as a signed 16-bit integer. The fourth line (added by human) presents
interpretation of the bytes in terms of netCDF components and values.

 4344 4601 0000 0000 0000 0000 0000 0000
 C D F 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
 17220 17921 00000 00000 00000 00000 00000 00000
[magic number] [0 records] [0 dimensions (ABSENT)]

 0000 0000 0000 0000 0000 0000 0000 0000
 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
 00000 00000 00000 00000 00000 00000 00000 00000
[0 global atts (ABSENT)] [0 variables (ABSENT)]

As a slightly less trivial example, consider the CDL

netcdf tiny {
dimensions:
 dim = 5;
variables:
 short vx(dim);
data:
 vx = 3, 1, 4, 1, 5 ;
}

which corresponds to a 92-byte netCDF file. The following is an edited dump of this file:

 4344 4601 0000 0000 0000 000a 0000 0001
 C D F 001 \0 \0 \0 \0 \0 \0 \0 \n \0 \0 \0 001
 17220 17921 00000 00000 00000 00010 00000 00001
[magic number] [0 records] [NC_DIMENSION] [1 dimension]

 0000 0003 6469 6d00 0000 0005 0000 0000
 \0 \0 \0 003 d i m \0 \0 \0 \0 005 \0 \0 \0 \0
 00000 00003 25705 27904 00000 00005 00000 00000
[3 char name = "dim"] [size = 5] [0 global atts

 0000 0000 0000 000b 0000 0001 0000 0002
 \0 \0 \0 \0 \0 \0 \0 013 \0 \0 \0 001 \0 \0 \0 002
 00000 00000 00000 00011 00000 00001 00000 00002
 (ABSENT)] [NC_VARIABLE] [1 variable] [2 char name =

 7678 0000 0000 0001 0000 0000 0000 0000
 v x \0 \0 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 \0
 30328 00000 00000 00001 00000 00000 00000 00000
 "vx"] [1 dimension] [with ID 0] [0 attributes

 0000 0000 0000 0003 0000 000c 0000 0050
 \0 \0 \0 \0 \0 \0 \0 003 \0 \0 \0 \f \0 \0 \0 P
 00000 00000 00000 00003 00000 00012 00000 00080
 (ABSENT)] [type NC_SHORT] [size 12 bytes] [offset: 80]

 0003 0001 0004 0001 0005 8001
 \0 003 \0 001 \0 004 \0 001 \0 005 200 001
 00003 00001 00004 00001 00005 -32767
[3] [1] [4] [1] [5] [fill]

Appendix C Summary of C Interface
const char* nc_inq_libvers (void);
const char* nc_strerror (int ncerr);

int nc_create (const char *path, int cmode, int *ncidp);
int nc_open (const char *path, int mode, int *ncidp);
int nc_set_fill (int ncid, int fillmode, int *old_modep);
int nc_redef (int ncid);
int nc_enddef (int ncid);
int nc_sync (int ncid);
int nc_abort (int ncid);
int nc_close (int ncid);
int nc_inq (int ncid, int *ndimsp, int *nvarsp,
 int *ngattsp, int *unlimdimidp);
int nc_inq_ndims (int ncid, int *ndimsp);
int nc_inq_nvars (int ncid, int *nvarsp);
int nc_inq_natts (int ncid, int *ngattsp);
int nc_inq_unlimdim (int ncid, int *unlimdimidp);

int nc_def_dim (int ncid, const char *name, size_t len,
 int *idp);
int nc_inq_dimid (int ncid, const char *name, int *idp);
int nc_inq_dim (int ncid, int dimid, char *name, size_t *lenp);
int nc_inq_dimname (int ncid, int dimid, char *name);
int nc_inq_dimlen (int ncid, int dimid, size_t *lenp);
int nc_rename_dim (int ncid, int dimid, const char *name);

int nc_def_var (int ncid, const char *name, nc_type xtype,
 int ndims, const int *dimidsp, int *varidp);
int nc_inq_var (int ncid, int varid, char *name,
 nc_type *xtypep, int *ndimsp, int *dimidsp,
 int *nattsp);
int nc_inq_varid (int ncid, const char *name, int *varidp);
int nc_inq_varname (int ncid, int varid, char *name);
int nc_inq_vartype (int ncid, int varid, nc_type *xtypep);
int nc_inq_varndims (int ncid, int varid, int *ndimsp);
int nc_inq_vardimid (int ncid, int varid, int *dimidsp);
int nc_inq_varnatts (int ncid, int varid, int *nattsp);
int nc_rename_var (int ncid, int varid, const char *name);
int nc_put_var_text (int ncid, int varid, const char *op);
int nc_get_var_text (int ncid, int varid, char *ip);
int nc_put_var_uchar (int ncid, int varid, const unsigned char *op);
int nc_get_var_uchar (int ncid, int varid, unsigned char *ip);
int nc_put_var_schar (int ncid, int varid, const signed char *op);
int nc_get_var_schar (int ncid, int varid, signed char *ip);
int nc_put_var_short (int ncid, int varid, const short *op);
int nc_get_var_short (int ncid, int varid, short *ip);
int nc_put_var_int (int ncid, int varid, const int *op);
int nc_get_var_int (int ncid, int varid, int *ip);
int nc_put_var_long (int ncid, int varid, const long *op);
int nc_get_var_long (int ncid, int varid, long *ip);

int nc_put_var_float (int ncid, int varid, const float *op);
int nc_get_var_float (int ncid, int varid, float *ip);
int nc_put_var_double (int ncid, int varid, const double *op);
int nc_get_var_double (int ncid, int varid, double *ip);
int nc_put_var1_text (int ncid, int varid, const size_t *indexp,
 const char *op);
int nc_get_var1_text (int ncid, int varid, const size_t *indexp,
 char *ip);
int nc_put_var1_uchar (int ncid, int varid, const size_t *indexp,
 const unsigned char *op);
int nc_get_var1_uchar (int ncid, int varid, const size_t *indexp,
 unsigned char *ip);
int nc_put_var1_schar (int ncid, int varid, const size_t *indexp,
 const signed char *op);
int nc_get_var1_schar (int ncid, int varid, const size_t *indexp,
 signed char *ip);
int nc_put_var1_short (int ncid, int varid, const size_t *indexp,
 const short *op);
int nc_get_var1_short (int ncid, int varid, const size_t *indexp,
 short *ip);
int nc_put_var1_int (int ncid, int varid, const size_t *indexp,
 const int *op);
int nc_get_var1_int (int ncid, int varid, const size_t *indexp,
 int *ip);
int nc_put_var1_long (int ncid, int varid, const size_t *indexp,
 const long *op);
int nc_get_var1_long (int ncid, int varid, const size_t *indexp,
 long *ip);
int nc_put_var1_float (int ncid, int varid, const size_t *indexp,
 const float *op);
int nc_get_var1_float (int ncid, int varid, const size_t *indexp,
 float *ip);
int nc_put_var1_double(int ncid, int varid, const size_t *indexp,
 const double *op);
int nc_get_var1_double(int ncid, int varid, const size_t *indexp,
 double *ip);
int nc_put_vara_text (int ncid, int varid, const size_t *startp,
 const size_t *countp, const char *op);
int nc_get_vara_text (int ncid, int varid, const size_t *startp,
 const size_t *countp, char *ip);
int nc_put_vara_uchar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const unsigned char *op);
int nc_get_vara_uchar (int ncid, int varid, const size_t *startp,
 const size_t *countp, unsigned char *ip);
int nc_put_vara_schar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const signed char *op);
int nc_get_vara_schar (int ncid, int varid, const size_t *startp,
 const size_t *countp, signed char *ip);
int nc_put_vara_short (int ncid, int varid, const size_t *startp,
 const size_t *countp, const short *op);
int nc_get_vara_short (int ncid, int varid, const size_t *startp,
 const size_t *countp, short *ip);
int nc_put_vara_int (int ncid, int varid, const size_t *startp,
 const size_t *countp, const int *op);

int nc_get_vara_int (int ncid, int varid, const size_t *startp,
 const size_t *countp, int *ip);
int nc_put_vara_long (int ncid, int varid, const size_t *startp,
 const size_t *countp, const long *op);
int nc_get_vara_long (int ncid, int varid, const size_t *startp,
 const size_t *countp, long *ip);
int nc_put_vara_float (int ncid, int varid, const size_t *startp,
 const size_t *countp, const float *op);
int nc_get_vara_float (int ncid, int varid, const size_t *startp,
 const size_t *countp, float *ip);
int nc_put_vara_double(int ncid, int varid, const size_t *startp,
 const size_t *countp, const double *op);
int nc_get_vara_double(int ncid, int varid, const size_t *startp,
 const size_t *countp, double *ip);
int nc_put_vars_text (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const char *op);
int nc_get_vars_text (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 char *ip);
int nc_put_vars_uchar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const unsigned char *op);
int nc_get_vars_uchar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 unsigned char *ip);
int nc_put_vars_schar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const signed char *op);
int nc_get_vars_schar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 signed char *ip);
int nc_put_vars_short (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const short *op);
int nc_get_vars_short (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 short *ip);
int nc_put_vars_int (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const int *op);
int nc_get_vars_int (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 int *ip);
int nc_put_vars_long (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const long *op);
int nc_get_vars_long (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 long *ip);
int nc_put_vars_float (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const float *op);
int nc_get_vars_float (int ncid, int varid, const size_t *startp,

 const size_t *countp, const ptrdiff_t *stridep,
 float *ip);
int nc_put_vars_double(int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const double *op);
int nc_get_vars_double(int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 double *ip);
int nc_put_varm_text (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const char *op);
int nc_get_varm_text (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, char *ip);
int nc_put_varm_uchar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const unsigned char *op);
int nc_get_varm_uchar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, unsigned char *ip);
int nc_put_varm_schar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const signed char *op);
int nc_get_varm_schar (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, signed char *ip);
int nc_put_varm_short (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const short *op);
int nc_get_varm_short (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, short *ip);
int nc_put_varm_int (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const int *op);
int nc_get_varm_int (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, int *ip);
int nc_put_varm_long (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const long *op);
int nc_get_varm_long (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, long *ip);
int nc_put_varm_float (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const float *op);
int nc_get_varm_float (int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, float *ip);
int nc_put_varm_double(int ncid, int varid, const size_t *startp,
 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t *imapp, const double *op);
int nc_get_varm_double(int ncid, int varid, const size_t *startp,

 const size_t *countp, const ptrdiff_t *stridep,
 const ptrdiff_t * imap, double *ip);

int nc_inq_att (int ncid, int varid, const char *name,
 nc_type *xtypep, size_t *lenp);
int nc_inq_attid (int ncid, int varid, const char *name, int *idp);
int nc_inq_atttype (int ncid, int varid, const char *name,
 nc_type *xtypep);
int nc_inq_attlen (int ncid, int varid, const char *name,
 size_t *lenp);
int nc_inq_attname (int ncid, int varid, int attnum, char *name);
int nc_copy_att (int ncid_in, int varid_in, const char *name,
 int ncid_out, int varid_out);
int nc_rename_att (int ncid, int varid, const char *name,
 const char *newname);
int nc_del_att (int ncid, int varid, const char *name);
int nc_put_att_text (int ncid, int varid, const char *name, size_t len,
 const char *op);
int nc_get_att_text (int ncid, int varid, const char *name, char *ip);
int nc_put_att_uchar (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const unsigned char *op);
int nc_get_att_uchar (int ncid, int varid, const char *name,
 unsigned char *ip);
int nc_put_att_schar (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const signed char *op);
int nc_get_att_schar (int ncid, int varid, const char *name,
 signed char *ip);
int nc_put_att_short (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const short *op);
int nc_get_att_short (int ncid, int varid, const char *name, short *ip);
int nc_put_att_int (int ncid, int varid, const char *name,
 nc_type xtype,size_t len, const int *op);
int nc_get_att_int (int ncid, int varid, const char *name, int *ip);
int nc_put_att_long (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const long *op);
int nc_get_att_long (int ncid, int varid, const char *name, long *ip);
int nc_put_att_float (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const float *op);
int nc_get_att_float (int ncid, int varid, const char *name, float *ip);
int nc_put_att_double (int ncid, int varid, const char *name,
 nc_type xtype, size_t len, const double *op);
int nc_get_att_double (int ncid, int varid, const char *name,
 double *ip);

t as
an be

 well
er-

ces

age-
dent

rt for

lling

DF-3
ls,
e it in

emen-
want

ty,
ates
ary,
 in
Appendix D NetCDF 2 C Transition Guide

Overview of C interface changes

NetCDF version 3 includes a complete rewrite of the netCDF library. It is about twice as fas
the previous version. The netCDF file format is unchanged, so files written with version 3 c
read with version 2 code and vice versa.

The core library is now written in ANSI C. For example, prototypes are used throughout as
asconst qualifiers where appropriate. You must have an ANSI C compiler to compile this v
sion.

Rewriting the library offered an opportunity to implement improved C and FORTRAN interfa
that provide some significant benefits:

• type safety, by eliminating the need to use generic void* pointers;
• automatic type conversions, by eliminating the undesirable coupling between the langu

independent external netCDF types (NC_BYTE, …, NC_DOUBLE) and language-depen
internal data types (char, …, double);

• support for future enhancements, by eliminating obstacles to the clean addition of suppo
packed data and multithreading;

• more standard error behavior, by uniformly communicating an error status back to the ca
program in the return value of each function.

It is not necessary to rewrite programs that use the version 2 C interface, because the netC
library includes a backward compatibility interface that supports all the old functions, globa
and behavior. We are hoping that the benefits of the new interface will be an incentive to us
new netCDF applications. It is possible to convert old applications to the new interface incr
tally, replacing netCDF-2 calls with the corresponding netCDF-3 calls one at a time. If you
to check that only netCDF-3 calls are used in an application, a preprocessor macro
(NO_NETCDF_2) is available for that purpose.

Other changes in the implementation of netCDF result in improved portability, maintainabili
and performance on most platforms. A clean separation between I/O and type layers facilit
platform-specific optimizations. The new library no longer uses a vendor-provided XDR libr
which simplifies linking programs that use netCDF and speeds up data access significantly
most cases.

The New C Interface

First, here's an example of C code that uses the netCDF-2 interface:

void *bufferp;
nc_type xtype;

ncvarinq(ncid, varid, …, &xtype, …

 han-

rams

,

s.
ded to
…
/* allocate bufferp based on dimensions and type */

…
if (ncvarget(ncid, varid, start, count, bufferp) == -1) {
 fprintf(stderr, "Can’t get data, error code = %d\n",ncerr);
 /* deal with it */

…
}
switch(xtype) {
 /* deal with the data, according to type */

…
case NC_FLOAT:
 fanalyze((float *)bufferp);
 break;
case NC_DOUBLE:
 danalyze((double *)bufferp);
 break;
}

Here’s how you might handle this with the new netCDF-3 C interface:

/*
 * I want to use doubles for my analysis.
 */
double dbuf[NDOUBLES];
int status;

/* So, I use the function that gets the data as doubles. */
status = nc_get_vara_double(ncid, varid, start, count, dbuf)
if (status != NC_NOERR) {
 fprintf(stderr, "Can’t get data: %s\n", nc_strerror(status));
 /* deal with it */

…
}
danalyze(dbuf);

The example above illustrates changes in function names, data type conversion, and error
dling, discussed in detail in the sections below.

Function Naming Conventions

The netCDF-3 C library employs a new naming convention, intended to make netCDF prog
more readable. For example, the name of the function to rename a variable is now
nc_rename_var instead of the previousncvarrename .

All netCDF-3 C function names begin with thenc_ prefix. The second part of the name is a verb
like get , put , inq (for inquire), oropen . The third part of the name is typically the object of the
verb: for exampledim , var , or att for functions dealing with dimensions, variables, or attribute
To distinguish the various I/O operations for variables, a single character modifier is appen
var :

 the

harac-

since
is fea-
oint-
vious

not be

his
es will
for
f 11-

capa-
he

s are

dou-
ouble
ead a
this
e
ompat-
• var entire variable access
• var1 single value access
• vara array or array section access
• vars strided access to a subsample of values
• varm mapped access to values not contiguous in memory

At the end of the name for variable and attribute functions, there is a component indicating
type of the final argument:text , uchar , schar , short , int , long , float , or double . This part of
the function name indicates the type of the data container you are using in your program: c
ter string, unsigned char, signed char, and so on.

Also, all macro names in the public C interface begin with the prefixNC_. For example, the macro
which was formerlyMAX_NC_NAMEis nowNC_MAX_NAME, and the formerFILL_FLOAT is now
NC_FILL_FLOAT.

As previously mentioned, all the old names are still supported for backward compatibility.

Type Conversion

With the new interface, users need not be aware of the external type of numeric variables,
automatic conversion to or from any desired numeric type is now available. You can use th
ture to simplify code, by making it independent of external types. The elimination of void* p
ers provides detection of type errors at compile time that could not be detected with the pre
interface. Programs may be made more robust with the new interface, because they need
changed to accommodate a change to the external type of a variable.

If conversion to or from an external numeric type is necessary, it is handled by the library. T
automatic conversion and separation of external data representation from internal data typ
become even more important in netCDF version 4, when new external types will be added
packed data for which there is no natural corresponding internal type, for example, arrays o
bit values.

Converting from one numeric type to another may result in an error if the target type is not
ble of representing the converted value. (In netCDF-2, such overflows can only happen in t
XDR layer.) For example, a float may not be able to hold data stored externally as anNC_DOUBLE

(an IEEE floating-point number). When accessing an array of values, anNC_ERANGEerror is
returned if one or more values are out of the range of representable values, but other value
converted properly.

Note that mere loss of precision in type conversion does not return an error. Thus, if you read
ble precision values into an int, for example, no error results unless the magnitude of the d
precision value exceeds the representable range of ints on your platform. Similarly, if you r
large integer into a float incapable of representing all the bits of the integer in its mantissa,
loss of precision will not result in an error. If you want to avoid such precision loss, check th
external types of the variables you access to make sure you use an internal type that has a c
ible precision.

arrays

d

takes

f error
f an

ilure,
 The
r-
our-
ution
DF is
appli-

t
is
gers.

 com-

lls,
 by
e

The new interface distinguishes arrays of characters intended to represent text strings from
of 8-bit bytes intended to represent small integers. The interface supports the internal typestext ,
uchar , andschar , intended for text strings, unsigned byte values, and signed byte values.

The_uchar and_schar functions were introduced in netCDF-3 to eliminate an ambiguity, an
support both signed and unsigned byte data. In netCDF-2, whether the externalNC_BYTEtype rep-
resented signed or unsigned values was left up to the user. In netcdf-3, we treatNC_BYTEas signed
for the purposes of conversion to short, int, long, float, or double. (Of course, no conversion
place when the internal type is signed char.) In the _uchar functions, we treatNC_BYTEas if it were
unsigned. Thus, noNC_ERANGE error can occur converting betweenNC_BYTE and unsigned char.

Error handling

The new interface handles errors differently than netCDF-2. In the old interface, the default
behavior when an error was detected was to print an error message and exit. To get control o
handling, you had to set flag bits in a global variable, ncopts, and to determine the cause o
error, you had to test the value of another global variablencerr .

In the new interface, functions return an integer status that indicates not only success or fa
but also the cause of the error. The global variables ncerr and ncopt have been eliminated.
library will never try to print anything, nor will it callexit (unless you are using the netCDF ve
sion 2 compatibility functions). You will have to check the function return status and do this y
self. We eliminated these globals in the interest of supporting parallel (multiprocessor) exec
cleanly, as well as reducing the number of assumptions about the environment where netC
used. The new behavior should provide better support for using netCDF as a hidden layer in
cations that have their own GUI interface.

NC_LONGand NC_INT

Where the netCDF-2 interface usedNC_LONGto identify an external data type corresponding to
32-bit integers, the new interface usesNC_INT instead.NC_LONGis defined to have the same value
asNC_INT for backward compatibility, but it should not be used in new code. With new 64-bi
platforms using long for 64-bit integers, we would like to reduce the confusion caused by th
name clash. Note that there is still no netCDF external data type corresponding to 64-bit inte

What’s Missing?

The new C interface omits three “record I/O” functions,ncrecput , ncrecget , andncrecinq ,
from the netCDF-2 interface, although these functions are still supported via the netCDF-2
patibility interface.

This means you may have to replace one record-oriented call with multiple type-specific ca
one for each record variable. For example, a single call to ncrecput can always be replaced
multiple calls to the appropriatenc_put_var functions, one call for each variable accessed. Th

ty and

tCDF
 per-

y
po-

DF

ou
. It is
d auto-

ion
infor-

. The
rs are

cified
 the
ng
 not

than
DF-3
e

record-oriented functions were omitted, because there is no simple way to provide type-safe
automatic type conversion for such an interface.

There is no function corresponding to thenctypelen function from the version 2 interface. The
separation of internal and external types and the new type-conversion interfaces makenctypelen

unnecessary. Since users read into and write out of native types, thesizeof operator is perfectly
adequate to determine how much space to allocate for a value.

In the previous library, there was no checking that the characters used in the name of a ne
object were compatible with CDL restrictions. The ncdump and ncgen utilities that use CDL
mit only alphanumeric characters, “_” and “- ” in names. Now this restriction is also enforced b
the library for creation of new dimensions, variables, and attributes. Previously existing com
nents with less restrictive names will still work OK.

Other Changes

There are two new functions in netCDF-3 that don’t correspond to any netCDF-2 functions:
nc_inq_libvers andnc_strerror . The version of the netCDF library in use is returned as a
string bync_inq_libvers . An error message corresponding to the status returned by a netC
function call is returned as a string by thenc_strerror function.

A newNC_SHAREflag is available for use in annc_open or nc_create call, to suppress the default
buffering of accesses. The use ofNC_SHAREfor concurrent access to a netCDF dataset means y
don’t have to callnc_sync after every access to make sure that disk updates are synchronous
important to note that changes to ancillary data, such as attribute values, are not propagate
matically by use of theNC_SHAREflag. Use of thenc_sync function is still required for this pur-
pose.

The version 2 interface had a single inquiry function,ncvarinq for getting the name, type, and
shape of a variable. Similarly, only a single inquiry function was available for getting informat
about a dimension, an attribute, or a netCDF dataset. When you only wanted a subset of this
mation, you had to provide NULL arguments as placeholders for the unneeded information
new interface includes additional inquire functions that return each item separately, so erro
less likely from miscounting arguments.

The previous implementation returned an error when 0-valued count components were spe
in ncvarput andncvarget calls. This restriction has been removed, so that now functions in
nc_put_var andnc_get_var families may be called with 0-valued count components, resulti
in no data being accessed. Although this may seem useless, it simplifies some programs to
treat 0-valued counts as a special case.

The previous implementation returned an error when the same dimension was used more
once in specifying the shape of a variable in ncvardef. This restriction is relaxed in the netC
implementation, because an autocorrelation matrix is a good example where using the sam
dimension twice makes sense.

ot in

func-
In the new interface, units for theimap argument to thenc_put_varm andnc_get_varm families
of functions are now in terms of the number of data elements of the desired internal type, n
terms of bytes as in the netCDF version-2 mapped access interfaces.

Following is a table of netCDF-2 function names and names of the corresponding netCDF-3
tions. For parameter lists of netCDF-2 functions, see the netCDF-2 User’s Guide.

ncabort nc_abort

ncattcopy nc_copy_att

ncattdel nc_del_att

ncattget nc_get_att_double, nc_get_att_float, nc_get_att_int, nc_get_att_long,
nc_get_att_schar, nc_get_att_short, nc_get_att_text, nc_get_att_uchar

ncattinq nc_inq_att, nc_inq_attid, nc_inq_attlen, nc_inq_atttype

ncattname nc_inq_attname

ncattput nc_put_att_double, nc_put_att_float, nc_put_att_int, nc_put_att_long,
nc_put_att_schar, nc_put_att_short, nc_put_att_text, nc_put_att_uchar

ncattrename nc_rename_att

ncclose nc_close

nccreate nc_create

ncdimdef nc_def_dim

ncdimid nc_inq_dimid

ncdiminq nc_inq_dim, nc_inq_dimlen, nc_inq_dimname

ncdimrename nc_rename_dim

ncendef nc_enddef

ncinquire nc_inq, nc_inq_natts, nc_inq_ndims, nc_inq_nvars, nc_inq_unlimdim

ncopen nc_open

ncrecget (none)

ncrecinq (none)

ncrecput (none)

ncredef nc_redef

ncsetfill nc_set_fill

ncsync nc_sync

long,

ng,
char

ng,
nctypelen (none)

ncvardef nc_def_var

ncvarget nc_get_vara_double, nc_get_vara_float, nc_get_vara_int, nc_get_vara_
nc_get_vara_schar, nc_get_vara_short, nc_get_vara_text,
nc_get_vara_uchar

ncvarget1 nc_get_var1_double, nc_get_var1_float, nc_get_var1_int,
nc_get_var1_long, nc_get_var1_schar, nc_get_var1_short,
nc_get_var1_text, nc_get_var1_uchar

ncvargetg nc_get_varm_double, nc_get_varm_float, nc_get_varm_int,
nc_get_varm_long, nc_get_varm_schar, nc_get_varm_short,
nc_get_varm_text, nc_get_varm_uchar,
nc_get_vars_double, nc_get_vars_float, nc_get_vars_int, nc_get_vars_lo
nc_get_vars_schar, nc_get_vars_short, nc_get_vars_text, nc_get_vars_u

ncvarid nc_inq_varid

ncvarinq nc_inq_var, nc_inq_vardimid, nc_inq_varname, nc_inq_varnatts,
nc_inq_varndims, nc_inq_vartype

ncvarput nc_put_vara_double, nc_put_vara_float, nc_put_vara_int,
nc_put_vara_long, nc_put_vara_schar, nc_put_vara_short,
nc_put_vara_text, nc_put_vara_uchar

ncvarput1 nc_put_var1_double, nc_put_var1_float, nc_put_var1_int,
nc_put_var1_long, nc_put_var1_schar, nc_put_var1_short,
nc_put_var1_text, nc_put_var1_uchar

ncvarputg nc_put_varm_double, nc_put_varm_float, nc_put_varm_int,
nc_put_varm_long, nc_put_varm_schar, nc_put_varm_short,
nc_put_varm_text, nc_put_varm_uchar,
nc_put_vars_double, nc_put_vars_float, nc_put_vars_int, nc_put_vars_lo
nc_put_vars_schar, nc_put_vars_short, nc_put_vars_text,
nc_put_vars_uchar

ncvarrename nc_rename_var

(none) nc_inq_libvers

(none) nc_strerror

	1.2 NetCDF Is Not a Database Management System
	1.3 File Format
	1.4 What about Performance?
	1.5 Is NetCDF a Good Archive Format?
	1.6 Creating Self-Describing Data conforming to Conventions
	1.7 Background and Evolution of the NetCDF Interface
	1.8 What’s New Since the Previous Release?
	1.9 Limitations of NetCDF
	1.10 Future Plans for NetCDF
	2.1.2 network Common Data Form Language (CDL)

	2.2 Dimensions
	2.3 Variables
	2.3.1 Coordinate Variables

	2.4 Attributes
	2.5 Differences between Attributes and Variables
	3.2 Data Access
	3.2.2 An Example of Array-Section Access
	3.2.3 More on General Array Section Access

	3.3 Type Conversion
	3.4 Data Structures
	4.2 Reading a NetCDF Dataset with Known Names
	4.3 Reading a netCDF Dataset with Unknown Names
	4.4 Adding New Dimensions, Variables, Attributes
	4.5 Error Handling
	4.6 Compiling and Linking with the NetCDF Library
	5.2 Get error message corresponding to error status: nc_strerror
	5.3 Get netCDF library version: nc_inq_libvers
	5.4 Create a NetCDF dataset: nc_create
	5.5 Open a NetCDF Dataset for Access: nc_open
	5.6 Put Open NetCDF Dataset into Define Mode: nc_redef
	5.7 Leave Define Mode: nc_enddef
	5.8 Close an Open NetCDF Dataset: nc_close
	5.9 Inquire about an Open NetCDF Dataset: nc_inq Family
	5.10 Synchronize an Open NetCDF Dataset to Disk: nc_sync
	5.11 Back Out of Recent Definitions: nc_abort
	5.12 Set Fill Mode for Writes: nc_set_fill
	6.2 Get a Dimension ID from Its Name: nc_inq_dimid
	6.3 Inquire about a Dimension: nc_inq_dim Family
	6.4 Rename a Dimension: nc_rename_dim
	7.2 Create a Variable: nc_def_var
	7.3 Get a Variable ID from Its Name: nc_inq_varid
	7.4 Get Information about a Variable from Its ID: nc_inq_var family
	7.5 Write a Single Data Value: nc_put_var1_�type
	7.6 Write an Entire Variable: nc_put_var_�type
	7.7 Write an Array of Values: nc_put_vara_�type
	7.8 Write a Subsampled Array of Values: nc_put_vars_�type
	7.9 Write a Mapped Array of Values: nc_put_varm_�type
	7.10 Read a Single Data Value: nc_get_var1_�type
	7.11 Read an Entire Variable nc_get_var_�type
	7.12 Read an Array of Values: nc_get_vara_�type
	7.13 Read a Subsampled Array of Values: nc_get_vars_�type
	7.14 Read a Mapped Array of Values: nc_get_varm_�type
	7.15 Reading and Writing Character String Values
	7.16 Fill Values
	7.17 Rename a Variable: nc_rename_var
	8.2 Create an Attribute: nc_put_att_�type
	8.3 Get Information about an Attribute: nc_inq_att Family
	8.4 Get Attribute’s Values:nc_get_att_�type
	8.5 Copy Attribute from One NetCDF to Another: nc_copy_att
	8.6 Rename an Attribute: nc_rename_att
	8.7 Delete an Attribute: nc_del_att
	9.2 The Extended XDR Layer
	9.3 The I/O Layer
	9.4 UNICOS Optimization
	10.2 CDL Data Types
	10.3 CDL Notation for Data Constants
	10.4 ncgen
	10.5 ncdump

