NetCDF Synoptische Daten auf Profilen
Aus BAWiki
Kurze Beschreibung
Synoptische Daten auf mehreren Längs- und Querprofilen.
Weitere Beschreibungen
- NetCDF Profile: Koordinaten und Namensbezeichnungen sowie Koordinatentransformation;
- NetCDF Zeitkoordinate: Koordinatenvariable time;
- NetCDF Vertikalkoordinate: Vertikalkoordinate depth oder height:
- node_depth_3d : Vertikalkoordinate für tiefenstrukturierte Daten an Knoten;
- edge_depth_3d : Vertikalkoordinate für tiefenstrukturierte Daten an Kanten.
Dimensionen
Soweit nicht schon oben festgelegt, kommen noch folgende Dimensionen hinzu:
- dimensions:
- nMesh1_vedge = total number of computational data above nodes ;
- nMesh1_face = total number of computational data above edges ;
- nMesh1_prof = total number of (different) profiles ;
- nMesh1_strlen1 = maximum number of characters used in long names ;
- nMesh1_strlen2 = maximum number of characters used in code names ;
- nMesh1_strlen3 = maximum number of characters used in short names ;
Bezeichnungen
Profile
Langer Name
- char Mesh1_prof_long_name(nMesh1_prof,nMesh1_strlen1) ;
- Mesh1_node_long_name:standard_name = "???" ; \\ no standard name available
- Mesh1_node_long_name:long_name = "long name of profile" ;
- char Mesh1_prof_long_name(nMesh1_prof,nMesh1_strlen1) ;
Code-Name
- char Mesh1_prof_code_name(nMesh1_prof,nMesh1_strlen2) ;
- Mesh1_node_code_name:standard_name = "???" ; \\ no standard name available
- Mesh1_node_code_name:long_name = "code name of profile" ;
- char Mesh1_prof_code_name(nMesh1_prof,nMesh1_strlen2) ;
Kurzer Name
- char Mesh1_prof_short_name(nMesh1_prof,nMesh1_strlen3) ;
- Mesh1_node_short_name:standard_name = "???" ; \\ no standard name available
- Mesh1_node_short_name:long_name = "short name of profile" ;
- char Mesh1_prof_short_name(nMesh1_prof,nMesh1_strlen3) ;
Positionen
Marker
Datenkompression
Auf Grund der Verwendung von z-Schichten sind über jeder Position in Abhängigkeit von der Wassertiefe unterschiedlich viele (aktive) Berechnungszellen vorhanden. Zur Reduktion der Größe der Ergebnisdatensätze werden verschiedene Dimensionen in einer komprimierten Dimension zusammengefasst. Dauerhaft fehlende Daten werden daher erst gar nicht in der Datei abgespeichert. Dies reduziert bei drei-dimensionalen Simulationen mit z-Schichten den Speicheraufwand typischer Weise um 60 bis 80 Prozent.
Komprimierte Daten an Knoten
- integer nMesh1_pnode(nMesh1_pnode) ; \\ 2D data at nodes, profile oriented
- nMesh1_pnode:compress = "nMesh1_node, nMesh1_prof" ;
- integer nMesh1_pvedge(nMesh1_pvedge) ; \\ 3D data at nodes, profile oriented
- nMesh1_pvedge:compress = "node_depth_3d nMesh1_node nMesh1_prof" ;
- integer nMesh1_pnode(nMesh1_pnode) ; \\ 2D data at nodes, profile oriented
Komprimierte Daten an Kanten
- integer nMesh1_pedge(nMesh1_pedge) ; \\ 2D data at edges, profile oriented
- nMesh1_pedge:compress = "nMesh1_edge, nMesh1_prof" ;
- integer nMesh1_pface(nMesh1_pface) ; \\ 3D data at edges, profile oriented
- nMesh1_pface:compress = "edge_depth_3d nMesh1_edge nMesh1_prof" ;
- integer nMesh1_pedge(nMesh1_pedge) ; \\ 2D data at edges, profile oriented
Gewichte
Gewichte werden insbesondere im Postprocessing benötigt, um abgeleitete Daten korrekt berechnen zu können, falls die hierfür relevanten Gewichtsfaktoren, hier Längen, nicht in einfacher Weise aus den Koordinaten abgeleitet werden können. Die Verwendung von Gewichten bringt daher eine große Sicherheit in die späteren Weiterverarbeitung der Daten. Beispiele für abgeleitete Daten sind insbesondere Tiefenmittelwerte oder (spezifische) Durchflussberechnungen.
Längen
Maximale Kantenlänge
- double Mesh1_edge_max_length_2d(nMesh1_pedge) ; \\ compression used
- Mesh1_edge_max_length_2d:standard_name = "???" ; \\ eventually not required
- Mesh1_edge_max_length_2d:long_name = "total length above 1D mesh edges, vertically integrated" ;
- Mesh1_edge_max_length_2d:units = "m" ;
- Mesh1_edge_max_length_2d:coordinates = "Mesh1_prof_long_name Mesh1_edge_lon Mesh1_edge_lat" ;
- Mesh1_edge_max_length_2d:_FillValue = fillvalue ;
- Mesh1_edge_max_length_2d:valid_range = valid minimum, valid maximum ;
- Mesh1_edge_max_length_2d:grid_mapping = "crs" ;
- Hinweis: bei klassischen Gitternetzen ist die maximale Länge einer durchströmten Kante im Berechnungsgitter und im geometrischen Gitter identisch. In neueren Verfahren, wie z. B. UnTRIM2, kann die durchströmte Kante während der Berechnung allerdings kleiner als die maximale (geometrische) Länge sein.
- double Mesh1_edge_max_length_2d(nMesh1_pedge) ; \\ compression used
Nasse Kantenlänge, summiert über alle Schichten
- double Mesh1_edge_wet_length_2d(time,nMesh1_pedge) ;
- Mesh1_edge_wet_length_2d:standard_name = "???" ; \\ eventually not required
- Mesh1_edge_wet_length_2d:long_name = "wet length above 1D mesh edges, vertically integrated" ;
- Mesh1_edge_wet_length_2d:units = "m" ;
- Mesh1_edge_wet_length_2d:coordinates = "Mesh1_prof_long_name Mesh1_edge_lon Mesh1_edge_lat" ;
- Mesh1_edge_wet_length_2d:_FillValue = fillvalue ;
- Mesh1_edge_wet_length_2d:valid_range = valid minimum, valid maximum ;
- Mesh1_edge_wet_length_2d:grid_mapping = "crs" ;
- Hinweis: bei klassischen Gitternetzen ist die nasse, also von Wasser bedeckte Kantenlänge entweder Null oder gleich der maximalen Kantenlänge. In neueren Verfahren, wie z. B. UnTRIM2, kann die nasse Kantenlänge hingegen kontinuierlich zwischen Null und der maximalen Kantenlänge je nach dem Grad der Wasserbedeckung, in stark nichtlinearer Weise variieren.
- double Mesh1_edge_wet_length_2d(time,nMesh1_pedge) ;
Durchflusshöhe an Knoten, summiert über alle Schichten
- double Mesh1_node_water_depth_2d(time,nMesh1_pnode) ; \\ compression used
- Mesh1_node_water_depth_2d:standard_name = "sea_floor_depth_below_sea_surface" ;
- Mesh1_node_water_depth_2d:long_name = "water depth at 1D mesh nodes, vertically integrated" ;
- Mesh1_node_water_depth_2d:units = "m" ;
- Mesh1_node_water_depth_2d:coordinates = "Mesh1_prof_long_name Mesh1_node_lon Mesh1_node_lat" ;
- Mesh1_node_water_depth_2d:_FillValue = fillvalue ;
- Mesh1_node_water_depth_2d:valid_range = valid minimum, valid maximum ;
- Mesh1_node_water_depth_2d:grid_mapping = "crs" ;
- Hinweis: entspricht der Wassertiefe an den Positionen.
- double Mesh1_node_water_depth_2d(time,nMesh1_pnode) ; \\ compression used
Duchflusshöhe an Knoten, differenziert nach Schichten
- double Mesh1_node_water_depth_3d(time,nMesh1_pvedge) ; \\ compression used
- Mesh1_node_water_depth_3d:standard_name = "???" ;
- Mesh1_node_water_depth_3d:long_name = "water depth at 1D mesh nodes, vertically structured" ;
- Mesh1_node_water_depth_3d:units = "m" ;
- Mesh1_node_water_depth_3d:coordinates = "Mesh1_prof_long_name Mesh1_node_lon Mesh1_node_lat" ;
- Mesh1_node_water_depth_3d:_FillValue = fillvalue ;
- Mesh1_node_water_depth_3d:valid_range = valid minimum, valid maximum ;
- Mesh1_node_water_depth_3d:grid_mapping = "crs" ;
- Hinweis: die Wassertiefe in den einzelnen Schichten ist bei Verwendung von z-Schichten sowohl vom Wasserstand, der Lage der Gewässersohle, und zusätzlich noch von der Position der z-Schichten abhängig. Diese Daten sind für einen Postprozessor nur unter Kenntnis der in dem erzeugenden HN-Verfahren benutzten Algorithmen exakt rekonstruierbar.
- double Mesh1_node_water_depth_3d(time,nMesh1_pvedge) ; \\ compression used
Flächen
Duchflussfläche über Kanten, summiert über alle Schichten
- double Mesh1_face_flow_area_2d(time,nMesh1_pedge) ;
- Mesh1_face_flow_area_2d:standard_name = "???" ; \\ eventually not required
- Mesh1_face_flow_area_2d:long_name = "flow area above 1D mesh edges, vertically integrated" ;
- Mesh1_face_flow_area_2d:units = "m2" ;
- Mesh1_face_flow_area_2d:coordinates = "Mesh1_prof_long_name Mesh1_edge_lon Mesh1_edge_lat" ;
- Mesh1_face_flow_area_2d:_FillValue = fillvalue ;
- Mesh1_face_flow_area_2d:valid_range = valid minimum, valid maximum ;
- Mesh1_face_flow_area_2d:grid_mapping = "crs" ;
- Hinweis: bei klassischen Gitternetzen entspricht die von Wasser durchflossene Fläche über einer Kante dem Produkt aus maximaler Kantenlänge und Wasserbedeckung. In neueren Verfahren, wie z. B. UnTRIM2, hängt die durchströmte Fläche über einer Kante in stark nichtlinearer Weise vom Grad der Wasserbedeckung ab, und kann daher nicht einfach rekonstruiert werden.
- double Mesh1_face_flow_area_2d(time,nMesh1_pedge) ;
Durchflussfläche über Kanten, differenziert nach Schichten
- double Mesh1_face_flow_area_3d(time,nMesh1_pface) ; \\ compression used
- Mesh1_face_flow_area_3d:standard_name = "???" ; \\ eventually not required
- Mesh1_face_flow_area_3d:long_name = "flow area above 1D mesh edges, vertically structured" ;
- Mesh1_face_flow_area_3d:units = "m2" ;
- Mesh1_face_flow_area_3d:coordinates = "Mesh1_edge_lon Mesh1_edge_lat" ;
- Mesh1_face_flow_area_3d:_FillValue = fillvalue ;
- Mesh1_face_flow_area_3d:valid_range = valid minimum, valid maximum ;
- Mesh1_face_flow_area_3d:grid_mapping = "crs" ;
- Hinweis: die in einer z-Schicht von Wasser durchflossene Fläche ist eine Funktion des Wasserstands, der Lage der Gewässersohle, sowie der Lage der z-Schichten. Insbesondere in neueren Verfahren, wie z. B. UnTRIM2, hängt die durchströmte Fläche in stark nichtlinearer Weise vom Grad der Wasserbedeckung ab, und kann daher nicht einfach rekonstruiert werden.
- double Mesh1_face_flow_area_3d(time,nMesh1_pface) ; \\ compression used
Aktuelle (zeitvariable) Topografie
Es werden hier Angaben nur für zeitvariable Topografie gemacht. Bei stationärer Topografie entfällt die Dimension time.
Knoten
- double Mesh1_node_depth(time,nMesh1_pnode) ;
- Mesh1_node_depth:standard_name = "sea_floor_depth_below_geoid" ;
- Mesh1_node_depth:long_name = "sea floor depth at 1D mesh nodes" ;
- Mesh1_node_depth:units = "m" ;
- Mesh1_node_depth:coordinates = "Mesh1_prof_long_name Mesh1_node_lon Mesh1_node_lat" ;
- Mesh1_node_depth:_FillValue = fillvalue ;
- Mesh1_node_depth:valid_range = valid minimum, valid maximum ;
- Mesh1_node_depth:cell_methods = "nMesh1_pnode: point" ;
- Mesh1_node_depth:grid_mapping = "crs" ;
- double Mesh1_node_depth(time,nMesh1_pnode) ;
Kanten
- double Mesh1_edge_depth(time,nMesh1_pedge) ;
- Mesh1_edge_depth:standard_name = "sea_floor_depth_below_geoid" ;
- Mesh1_edge_depth:long_name = "sea floor depth for 1D mesh edges" ;
- Mesh1_edge_depth:units = "m" ;
- Mesh1_edge_depth:coordinates = "Mesh1_prof_long_name Mesh1_edge_lon Mesh1_edge_lat" ;
- Mesh1_edge_depth:_FillValue = fillvalue ;
- Mesh1_edge_depth:valid_range = valid minimum, valid maximum ;
- Mesh1_edge_depth:cell_methods = "nMesh1_pedge: mean" ;
- Mesh1_poly_depth:cell_measures = "length: Mesh1_poly_max_length_2d" ;
- Mesh1_edge_depth:grid_mapping = "crs" ;
- double Mesh1_edge_depth(time,nMesh1_pedge) ;
Maximale zulässige Tiefe
- Vollständig analog zu Aktuelle Tiefe vorgehen, jedoch ohne Dimension time.
- Vorschlag für die Namensgebung:
- Knoten: "Mesh1_node_max_depth(nMesh1_pnode)" , und
- kanten: "Mesh1_edge_max_depth(nMesh1_pedge)" .
Wasserstand
Knoten
- double Mesh1_node_water_level(time,nMesh1_pnode) ;
- Mesh1_node_water_level:standard_name = "sea_surface_height_above_geoid" ;
- Mesh1_node_water_level:long_name = "water level at 1D mesh nodes" ;
- Mesh1_node_water_level:units = "m" ;
- Mesh1_node_water_level:coordinates = "Mesh1_prof_long_name Mesh1_node_lon Mesh1_node_lat" ;
- Mesh1_node_water_level:_FillValue = fillvalue ;
- Mesh1_node_water_level:valid_range = valid minimum, valid maximum ;
- Mesh1_node_water_level:cell_methods = "nMesh1_pnode: point" ;
- Mesh1_node_water_level:grid_mapping = "crs" ;
- double Mesh1_node_water_level(time,nMesh1_pnode) ;
Kanten
- double Mesh1_edge_water_level(time,nMesh1_pedge) ;
- Mesh1_edge_water_level:standard_name = "sea_surface_height_above_geoid" ;
- Mesh1_edge_water_level:long_name = "water level at 1D mesh edges" ;
- Mesh1_edge_water_level:units = "m" ;
- Mesh1_edge_water_level:coordinates = "Mesh1_prof_long_name Mesh1_node_lon Mesh1_node_lat" ;
- Mesh1_edge_water_level:_FillValue = fillvalue ;
- Mesh1_edge_water_level:valid_range = valid minimum, valid maximum ;
- Mesh1_edge_water_level:cell_methods = "nMesh1_pedge: point" ;
- Mesh1_edge_water_level:grid_mapping = "crs" ;
- double Mesh1_edge_water_level(time,nMesh1_pedge) ;
Tiefengemittelter Salzgehalt
Knoten
- double Mesh1_node_salinity_2d(time,nMesh1_pnode) ;
- Mesh1_node_salinity_2d:standard_name = "sea_water_salinity" ;
- Mesh1_node_salinity_2d:long_name = "salinity at 1D mesh nodes, depth averaged" ;
- Mesh1_node_salinity_2d:units = "0.001" ;
- Mesh1_node_salinity_2d:coordinates = "Mesh1_prof_long_name Mesh1_node_lon Mesh1_node_lat" ;
- Mesh1_node_salinity_2d:_FillValue = fillvalue ;
- Mesh1_node_salinity_2d:valid_range = valid minimum, valid maximum ;
- Mesh1_node_salinity_2d:cell_methods = "nMesh1_pnode: mean" ;
- Mesh1_node_salinity_2d:cell_measures = "depth: Mesh1_node_water_depth_2d"
- Mesh1_node_salinity_2d:grid_mapping = "crs" ;
- double Mesh1_node_salinity_2d(time,nMesh1_pnode) ;
Kanten
- double Mesh1_node_salinity_2d(time,nMesh1_pedge) ;
- Mesh1_edge_salinity_2d:standard_name = "sea_water_salinity" ;
- Mesh1_edge_salinity_2d:long_name = "salinity at 1D mesh edges, depth averaged" ;
- Mesh1_edge_salinity_2d:units = "0.001" ;
- Mesh1_edge_salinity_2d:coordinates = "Mesh1_prof_long_name Mesh1_edge_lon Mesh1_edge_lat" ;
- Mesh1_edge_salinity_2d:_FillValue = fillvalue ;
- Mesh1_edge_salinity_2d:valid_range = valid minimum, valid maximum ;
- Mesh1_edge_salinity_2d:cell_methods = "nMesh1_pedge: mean" ;
- Mesh1_edge_salinity_2d:cell_measures = "area: Mesh1_face_flow_area_2d"
- Mesh1_edge_salinity_2d:grid_mapping = "crs" ;
- double Mesh1_node_salinity_2d(time,nMesh1_pedge) ;
Tiefenstrukturierter Salzgehalt
Knoten
- double Mesh1_node_salinity_3d(time,nMesh1_pvedge) ; \\ compression used
- Mesh1_node_salinity_3d:standard_name = "sea_water_salinity" ;
- Mesh1_node_salinity_3d:long_name = "salinity at 1D mesh nodes, vertically structured" ;
- Mesh1_node_salinity_3d:units = "0.001" ;
- Mesh1_node_salinity_3d:coordinates = "Mesh1_prof_long_name Mesh0_node_lon Mesh0_node_lat" ;
- Mesh1_node_salinity_3d:_FillValue = fillvalue ;
- Mesh1_node_salinity_3d:valid_range = valid minimum, valid maximum ;
- Mesh1_node_salinity_3d:cell_methods = "nMesh0_vedge: mean" ;
- Mesh1_node_salinity_3d:cell_measures = "depth: Mesh1_node_water_depth_3d" ;
- Mesh1_node_salinity_3d:grid_mapping = "crs" ;
- double Mesh1_node_salinity_3d(time,nMesh1_pvedge) ; \\ compression used
Tiefengemittelte Strömungsgeschwindigkeit
Knoten
- double Mesh0_node_velocity_x_2d(time,nMesh0_node) ;
- Mesh0_node_velocity_x_2d:standard_name = "sea_water_x_velocity" ; \\ or better eastward_sea_water_velocity
- Mesh0_node_velocity_x_2d:long_name = "current velocity in x-direction at locations, depth integrated" ;
- Mesh0_node_velocity_x_2d:units = "m s-1" ;
- Mesh0_node_velocity_x_2d:coordinates = "Mesh0_node_long_name Mesh0_node_lon Mesh0_node_lat" ;
- Mesh0_node_velocity_x_2d:_FillValue = fillvalue ;
- Mesh0_node_velocity_x_2d:valid_range = valid minimum, valid maximum ;
- Mesh0_node_velocity_x_2d:cell_methods = "nMesh0_node: mean" ;
- Mesh0_node_velocity_x_2d:cell_measures = "depth: Mesh0_node_water_depth_2d" ;
- Mesh0_node_velocity_x_2d:grid_mapping = "crs" ;
- Bemerkung: y-Komponente sea_water_y_velocity (northward_sea_water_velocity) analog.
- double Mesh0_node_velocity_x_2d(time,nMesh0_node) ;
Tiefenstrukturierte Strömungsgeschwindigkeit
Knoten
- double Mesh0_node_velocity_x_3d(time,nMesh0_vedge) ; \\ compression used
- Mesh0_node_velocity_x_3d:standard_name = "sea_water_x_velocity" ; \\ or better eastward_sea_water_velocity
- Mesh0_node_velocity_x_3d:long_name = "current velocity in x-direction at locations, vertically structured" ;
- Mesh0_node_velocity_x_3d:units = "m s-1" ;
- Mesh0_node_velocity_x_3d:coordinates = "Mesh0_node_long_name Mesh0_node_lon Mesh0_node_lat" ;
- Mesh0_node_velocity_x_3d:_FillValue = fillvalue ;
- Mesh0_node_velocity_x_3d:valid_range = valid minimum, valid maximum ;
- Mesh0_node_velocity_x_3d:cell_methods = "nMesh0_vedge: mean" ;
- Mesh0_node_velocity_x_3d:cell_measures = "depth: Mesh0_node_water_depth_3d" ;
- Mesh0_node_velocity_x_3d:grid_mapping = "crs" ;
- Bemerkung: y-Komponente sea_water_y_velocity (northward_sea_water_velocity) analog.
- double Mesh0_node_velocity_z_3d(time,nMesh0_vedge) ; \\ compression used
- Mesh0_node_velocity_z_3d:standard_name = "upward_sea_water_velocity" ;
- Mesh0_node_velocity_z_3d:long_name = "current velocity in z-direction at locations, vertically structured" ;
- Mesh0_node_velocity_z_3d:units = "m s-1" ;
- Mesh0_node_velocity_z_3d:coordinates = "Mesh0_node_long_name Mesh0_node_lon Mesh0_node_lat" ;
- Mesh0_node_velocity_z_3d:_FillValue = fillvalue ;
- Mesh0_node_velocity_z_3d:valid_range = valid minimum, valid maximum ;
- Mesh0_node_velocity_z_3d:cell_methods = "nMesh0_vedge: mean" ;
- Mesh0_node_velocity_z_3d:cell_measures = "depth: Mesh0_node_water_depth_3d" ;
- Mesh0_node_velocity_z_3d:grid_mapping = "crs" ;
- double Mesh0_node_velocity_x_3d(time,nMesh0_vedge) ; \\ compression used
Anmerkungen, Fragen
- Datei ist nicht vollständig CF-konform. Für das Attribut cell_measures müsste depth als Wert zugelassen werden. Allerdings ist depth ein CF Standardname, und dann könnte dieser Wert doch gemäß Abschnitt 7.3.4 in der CF-Metadaten Konvention zulässig sein.
- Soll das BAW-Attribut name_id (für den Code) zusätzlich benutzt werden?
- Können wir Vektoren zwischen verschiedenen Koordinatensystemen transformieren, um z. B. aus der x- und der y-Komponente die Ostkomponente zu berechnen?
- Wie kann ein sicherer Zusammenhang zwischen den Daten für die Schwebstoffklassen und den Klassennamen hergestellt werden?
- Kann der "Mesh0_suspended_matter_class_long_name" in dem Attribut coordinates genutzt werden?
- Ist es besser, die Daten der Schwebstoffklassen in einzelnen Feldern zu speichern? Dies wäre in Einklang mit den COARDS Konventionen.
- Sind "coordinates" und "grid_mapping" für die Namensbezeichnungen erforderlich/sinnvoll?
- Auf die Daten einer Position kann auch über die Namensbezeichnungen zugegriffen werden, daher erscheint der Wert "Mesh0_node_long_name" in dem Attribut coordinates. Dies entspricht der Empfehlung in Abschnitt 6.1 der CF-Metadaten Konvention.
- Benötigen wir ID und COLOR noch (in dieser Datei)? (sind oben vernachlässigt).
---