Differenzen der Berechnungsergebnisse
Aus BAWiki
Einführung
Für die von
- mathematischen Verfahren erzeugten Ergebnisse, durch
- Analyse der Berechnungsergebnisse ermittelten Kennwerte, oder
- Beobachtungsdaten
können verschiedene Differenzen berechnet werden. Typischer Weise lassen sich die verschiedenen Eingangsdaten wie folgt kategorisieren:
- Kategorie K0: [math]\displaystyle{ f(x,y,z) }[/math], von der Zeit unabhängige Größen;
- Kategorie K1: [math]\displaystyle{ f(x,y,z,t_1) }[/math], von der Zeit abhängige Größen, ein Termin;
- Kategorie KC: [math]\displaystyle{ f(x,y,z,t_i) }[/math], von der Zeit abhängige Größen, mehrere diskrete Termine, äquidistanter Zeitschritt [math]\displaystyle{ \Delta_t }[/math];
- Kategorie KN: [math]\displaystyle{ f(x,y,z,t_i) }[/math], von der Zeit abhängige Größen, mehrere diskrete Termine, nicht äquidistanter Zeitschritt [math]\displaystyle{ \Delta_t(i) }[/math].
Für geophysikalische Daten spielen insbesondere die Kategorien K1, KC und KN eine Rolle. Beispiele:
- Kategorie K1: Topografie/Bathymetrie [math]\displaystyle{ h(x,y,z,t_1) }[/math] für einen bestimmten Termin;
- Kategorie KC: Wasserspiegelauslenkung [math]\displaystyle{ \eta(x,y,z,t_i) }[/math] zu äquidistanten Terminen [math]\displaystyle{ t_i }[/math], z. B. von einem mathematischen Verfahren berechnet;
- Kategorie KN: Tidehochwasser [math]\displaystyle{ \eta^{\rm{Thw}}(x,y,z,t_i) }[/math] zu nicht äquidistanten Terminen [math]\displaystyle{ t_i }[/math], z. B. als Analyse-Ergebnis einer Wasserstandszeitreihe.
Definitionen
- Referenz-Daten [math]\displaystyle{ r }[/math]: Gegenüber [math]\displaystyle{ r }[/math] werden verschiedene Abweichungen von [math]\displaystyle{ f }[/math] ermittelt. Können Beobachtungsdaten, Simulations- oder Analyse-Ergebnisse für einen ausgezeichneten Zustand sein;
- Vergleichs-Daten [math]\displaystyle{ f }[/math]: Können ebenfalls Beobachtungsdaten, Simulations- oder Analyse-Ergebnisse sein, deren Unterschiede zu den Referenz-Daten ermittelt werden sollen. Z. B. Ergebnisse für einen anderen Zeitraum (natürliche Variation) oder (anthropogen beeinflussten Ausbau-) Zustand eines Systems;
- Logical-Operator 1: [math]\displaystyle{ V(r_i) }[/math] liefert den Ergebniswert .T. oder .F., in Abhängigkeit ob [math]\displaystyle{ r_i }[/math] gültig oder ungültig ist. Auf [math]\displaystyle{ f_i }[/math] angewendet gilt dasselbe.
- Logical-Operator 2: [math]\displaystyle{ V(r_I,f_i) }[/math] liefert den Ergebniswert .T. oder .F., in Abhängigkeit ob [math]\displaystyle{ V(r_i)\land V(f_i) }[/math] gültig oder ungültig ist.
- Integer-Operator 1: [math]\displaystyle{ P(r_i) }[/math] liefert den Ergebniswert 1 falls [math]\displaystyle{ V(r_i) }[/math] .T. ist und ansonsten den Wert 0. Auf [math]\displaystyle{ f_i }[/math] angewendet gilt dasselbe.
- Integer-Operator 2: [math]\displaystyle{ P(r_i,f_i) }[/math] liefert den Ergebniswert 1 falls [math]\displaystyle{ V(r_i)\land V(f_i) }[/math] .T. ist und ansonsten den Wert 0.
Voraussetzungen für die Berechnung von Differenzen
Folgende Voraussetzungen müssen die Eingangsdaten [math]\displaystyle{ r }[/math] und [math]\displaystyle{ f }[/math] erfüllt werden:
- [math]\displaystyle{ r }[/math] und [math]\displaystyle{ f }[/math] müssen derselben Kategorie (siehe oben) angehören;
- die Anzahl der Termine [math]\displaystyle{ t_i }[/math] muss für [math]\displaystyle{ r }[/math] und [math]\displaystyle{ f }[/math] identisch sein;
- für Daten der Kategorie KC müssen die äquidistanten Zeitschritte [math]\displaystyle{ \Delta t }[/math] für [math]\displaystyle{ r }[/math] und [math]\displaystyle{ f }[/math] übereinstimmen;
- (physikalische) Dimension und Bedeutung müssen für [math]\displaystyle{ r }[/math] und [math]\displaystyle{ f }[/math] äquivalent sein;
- sowohl [math]\displaystyle{ r_i }[/math] (kurz für [math]\displaystyle{ r(x,y,z,t_i) }[/math]) als auch [math]\displaystyle{ f_i }[/math] (kurz für [math]\displaystyle{ r(x,y,z,t_i) }[/math]) müssen für den Termin [math]\displaystyle{ i }[/math] gültig sein; ansonsten wird ein ungültiger Wert berechnet.
Berechnungsergebnisse
Für das Programm NCDELTA, mit dem die nachfolgenden Ergebnisse berechnet werden können, müssen die Werte von [math]\displaystyle{ r }[/math] nicht an denselben Orten wie die Werte von [math]\displaystyle{ f }[/math] definiert sein. Die Werte von [math]\displaystyle{ r }[/math] werden auf die Positionen von [math]\displaystyle{ f }[/math] interpoliert, insofern die Positionen in ihrer geografischen Lage um nicht mehr als einen kritischen Abstand [math]\displaystyle{ R^\max }[/math] voneinander entfernt liegen. Wird dieser kritische Abstand überschritten, so werden keine Ergebnisse berechnet. In diesem Fall wird ein ungültiger Wert als Ergebnis erzeugt. Folgende Berechnungsergebnisse können mit dem Programm NCDELTA berechnet werden.
Gewöhnliche Differenzen
Differenz
Das Ergebnis wird für alle Termine (ein Ergebniswert bei zeitunabhängigen Daten) für alle Positionen [math]\displaystyle{ (x,y,z) }[/math] berechnet:
- Es wird die Differenz zwischen [math]\displaystyle{ f_i }[/math] und [math]\displaystyle{ r_i }[/math] berechnet, falls [math]\displaystyle{ V(r_i,f_i) }[/math] den Wert .T. liefert:
- [math]\displaystyle{ d_i = f_i - r_i }[/math], falls [math]\displaystyle{ V(r_i,f_i) }[/math];
- Das Ergebnis wird mit invalid gekennzeichnet, falls [math]\displaystyle{ V(r_i,f_i) }[/math] den Wert .F. ergibt:
- [math]\displaystyle{ d_i = \rm{invalid} }[/math], falls [math]\displaystyle{ \lnot V(r_i,f_i) }[/math].
Die Berechnung wird für Daten der Kategorien K0, K1, KC und KN durchgeführt, also für alle Arten von Daten.
Maximale Differenz
Es wird der dem Betrage nach maximale Wert unter Beibehaltung des Vorzeichens ermittelt:
- Zunächst werden alle Differenzen [math]\displaystyle{ d_i }[/math] wir oben beschrieben berechnet;
- Aus den gültigen Werten wird ein Index [math]\displaystyle{ i^\max }[/math] so ermittelt, dass dort [math]\displaystyle{ \left|d_i\right| }[/math] maximal wird:
- [math]\displaystyle{ d^\max = d_{i^\max} }[/math].
- bezeichnet dann die im Sinne dieser Definition maximale Differenz; diese kann positiv, negativ oder Null sein;
- Falls alle Werte [math]\displaystyle{ d_i }[/math] ungültig sind, wird [math]\displaystyle{ d^\max = \rm{invalid} }[/math] gesetzt.
Die Berechnung wird für Daten der Kategorien KC und KN durchgeführt, also für alle Datensätze, die für mehr als einen Termin vorhanden sind. Man erhält immer dann einen gültigen Wert für [math]\displaystyle{ d^\max }[/math], falls wenigstens eine gültige Differenz [math]\displaystyle{ d_i }[/math] vorhanden ist. Programme wie NCPLOT ermöglichen bei der Visualisierung eine Filterung der dargestellten Daten mit Hilfe der Anzahl der gültigen Differenzen.
Minimale Differenz
Es wird der dem Betrage nach minimale Wert unter Beibehaltung des Vorzeichens ermittelt:
- Zunächst werden alle Differenzen [math]\displaystyle{ d_i }[/math] wir oben beschrieben berechnet;
- Aus den gültigen Werten wird ein Index [math]\displaystyle{ i^\min }[/math] so ermittelt, dass dort [math]\displaystyle{ \left|d_i\right| }[/math] minimal wird:
- [math]\displaystyle{ d^\min = d_{i^\min} }[/math].
- bezeichnet dann die im Sinne dieser Definition minimale Differenz; diese kann positiv, negativ oder Null sein;
- Falls alle Werte [math]\displaystyle{ d_i }[/math] ungültig sind, wird [math]\displaystyle{ d^\min = \rm{invalid} }[/math] gesetzt.
Die Berechnung wird für Daten der Kategorien KC und KN durchgeführt, also für alle Datensätze, die für mehr als einen Termin vorhanden sind. Man erhält immer dann einen gültigen Wert für [math]\displaystyle{ d^\min }[/math], falls wenigstens eine gültige Differenz [math]\displaystyle{ d_i }[/math] vorhanden ist. Programme wie NCPLOT ermöglichen bei der Visualisierung eine Filterung der dargestellten Daten mit Hilfe der Anzahl der gültigen Differenzen.
Mittlere Differenz
Es wird der Mittelwert aller gültigen Differenzen berechnet:
- Zunächst werden alle Differenzen [math]\displaystyle{ d_i }[/math] wir oben beschrieben berechnet;
- Aus den gültigen Werten folgt der Mittelwert:
'ODdmi', & ! 04 "Mittlere Differenz"
Mittlere Abweichung=
'ODdbi', & ! 05 "Mittlere Differenz nach Betrag"
Anzahl der gültigen Differenzen
Daten für das Taylor-Diagramm
Standardabweichung der Referenzdaten
'ORstd', & ! 07 "Standardabweichung der REFERENCE-Daten"
Standardabweichung der Vergleichsdaten
'OVstd', & ! 08 "Standardabweichung der VARIANT-Daten"
Mittelwert der Referenzdaten
'ORmit', & ! 09 "Mittelwert der REFERENCE-Daten"
Mittelwert der Variantendaten
'OVmit', & ! 10 "Mittelwert der VARIANT-Daten"
Korrelation
'ODcor', & ! 11 "Korrelation"
Pattern RMS
'ODprm', & ! 12 "Pattern RMS"
RMS der Mittelwerte
'ODmrm', & ! 13 "RMS aus Abweichung der Mittelwerte"
Anzahl der gültigen Referenzdaten
'ORnof', & ! 14 "Anzahl der gültigen REFERENCE-Daten"
Anzahl der gültigen Vergleichsdaten
'OVnof', & ! 15 "Anzahl der gültigen VARIANT-Daten"
Anzahl der gültigen Taylor-Daten
'OTnof', & ! 16 "Anzahl der gültigen Daten"
Median und Perzentile
Median
'ODp50', & ! 17 "Median der Differenzen"
Perzentil Q01
'ODp01', & ! 18 "Quantil Q_01 der Differenzen"
Perzentil Q05
'ODp05', & ! 19 "Quantil Q_05 der Differenzen"
Perzentil Q95
'ODp95', & ! 20 "Quantil Q_95 der Differenzen"
Perzentil Q99
'ODp99' /) ! 21 "Quantil Q_99 der Differenzen"
zurück zu Pre- und Postprocessing