Aktionen

NetCDF Synoptische Daten im Dreiecksgitter

Aus BAWiki

Version vom 9. September 2010, 14:34 Uhr von imported>Lang Guenther

Kurze Beschreibung

Synoptische Daten an Einzelpositionen.

An anderer Stelle beschriebene Inhalte

  • NetCDF Dreiecksgitter: Koordinaten, Topologie und Koordinatentransformation;
  • NetCDF Zeitkoordinate: Koordinatenvariable time;
  • NetCDF Vertikalkoordinate: Vertikalkoordinate depth oder height:
    1. node_depth_3d : Vertikalkoordinate für tiefenstrukturierte Daten an Knoten;
    2. edge_depth_3d : Vertikalkoordinate für tiefenstrukturierte Daten an Kanten;
    3. poly_depth_3d : Vertikalkoordinate für tiefenstrukturierte Daten an Polygonen.

Bemerkung: Es werden verschiedene Vertikalkoordinaten benötigt, da in jedem Attribut formula_terms verschiedene Variablen für Wasserstand und Boden eingesetzt werden müssen.

Dimensionen

Soweit nicht oben festgelegt, mommen noch folgende Dimensionen hinzu:

dimensions:
nMesh2_cell = total number of computational cells above polygons
nMesh2_face = total number of computational faces above edges
nMesh2_vedge = total number of computational data above nodes

Ergänzende Informationen für das numerische Verfahren

Kennzeichnung offener und geschlossener Kanten

integer Mesh2_edge_type(nMesh2_edge) ;
Mesh2_edge_type:standard_name = "???" ; \\ yet to be defined
Mesh2_edge_type:long_name = "type of 2D mesh edges, closed or open" ;
Mesh2_edge_type:coordinates = "Mesh2_edge_lon Mesh2_edge_lat" ;
Mesh2_edge_type:_FillValue = fillvalue ;
Mesh2_edge_type:valid_range = 0, 1 ;
Mesh2_edge_type:valid_values = 0, 1 ;
Mesh2_edge_type:flag_meanings = "closed_edge, open_edge"
Mesh2_edge_type:grid_mapping = "crs"

Kennzeichnung von Positionen für die Randwertsteuerung

Text fehlt noch.

Datenkompression - Entfernen dauerhaft fehlender Daten

Auf Grund der Verwendung von z-Schichten treten über jedem Polygon in Abhängigkeit von der Wassertiefe ggf. stark unterschiedliche Zahlen von (aktiven) Berechnungszellen auf. Zur Reduktion der Größe der Ergebnisdatensätze werden verschiedene Dimensionen in einer zusammengefasst.

Knoten

integer nMesh2_vedge(nMesh2_vedge) ;
nMesh2_vedge:compress = "node_depth_3d nMesh2_node"

Kanten

integer nMesh2_face(nMesh2_face) ;
nMesh2_face:compress = "edge_depth_3d nMesh2_edge"

Polygone

integer nMesh2_cell(nMesh2_cell) ;
nMesh2_cell:compress = "poly_depth_3d nMesh2_poly"

Gewichte

Gewichte werden insbesondere im Postprocessing benötigt, falls z. B. Flächen oder Volumina zur Ableitung weiterer Werte, z. B. für räumlich oder über die Wassertiefe gemittelte Daten, nicht ohne weiteres aus den Koordinaten abgeleitet werden können. Die Verwendung von Gewichten ist zu bevorzugen, um die korrekte spätere Verarbeitung der Daten sicher zu machen.

Längen

Vertikal integriert

double Mesh2_node_water_depth_2d(time,nMesh2_node) ;
Mesh2_node_water_depth_2d:standard_name = "???" ; \\ eventually not required
Mesh2_node_water_depth_2d:long_name = "water depth above 2D mesh nodes, vertically integrated" ;
Mesh2_node_water_depth_2d:units = "m" ;
Mesh2_node_water_depth_2d:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_node_water_depth_2d:_FillValue = fillvalue ;
Mesh2_node_water_depth_2d:valid_range = valid minimum, valid maximum ;
Mesh2_node_water_depth_2d:grid_mapping = "crs"

Vertikal strukturiert

double Mesh2_node_water_depth_3d(time,nMesh2_vedge) ; \\ compressed dimension used
Mesh2_node_water_depth_3d:standard_name = "???" ; \\ eventually not required
Mesh2_node_water_depth_3d:long_name = "water depth above 2D mesh nodes, vertically structured" ;
Mesh2_node_water_depth_3d:units = "m" ;
Mesh2_node_water_depth_3d:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_node_water_depth_3d:_FillValue = fillvalue ;
Mesh2_node_water_depth_3d:valid_range = valid minimum, valid maximum ;
Mesh2_node_water_depth_3d:grid_mapping = "crs"

Flächen

Vertikal integriert

double Mesh2_face_flow_area_2d(time,nMesh2_edge) ;
Mesh2_face_flow_area_2d:standard_name = "???" ; \\ eventually not required
Mesh2_face_flow_area_2d:long_name = "flow area above 2D mesh edges, vertically integrated" ;
Mesh2_face_flow_area_2d:units = "m2" ;
Mesh2_face_flow_area_2d:coordinates = "Mesh2_edge_lon Mesh2_edge_lat" ;
Mesh2_face_flow_area_2d:_FillValue = fillvalue ;
Mesh2_face_flow_area_2d:valid_range = valid minimum, valid maximum ;
Mesh2_face_flow_area_2d:grid_mapping = "crs"

Vertikal strukturiert

double Mesh2_face_flow_area_3d(time,nMesh2_face) ; \\ compressed dimension used
Mesh2_face_flow_area_3d:standard_name = "???" ; \\ eventually not required
Mesh2_face_flow_area_3d:long_name = "flow area above 2D mesh edges, vertically structured" ;
Mesh2_face_flow_area_3d:units = "m2" ;
Mesh2_face_flow_area_3d:coordinates = "Mesh2_edge_lon Mesh2_edge_lat" ;
Mesh2_face_flow_area_3d:_FillValue = fillvalue ;
Mesh2_face_flow_area_3d:valid_range = valid minimum, valid maximum ;
Mesh2_face_flow_area_3d:grid_mapping = "crs"

Volumina

Vertikal integriert

double Mesh2_poly_water_volume_2d(time,nMesh2_poly) ;
Mesh2_poly_water_volume_2d:standard_name = "???" ; \\ eventually not required
Mesh2_poly_water_volume_2d:long_name = "water volume above 2D mesh polygons, vertically integrated" ;
Mesh2_poly_water_volume_2d:units = "m3" ;
Mesh2_poly_water_volume_2d:coordinates = "Mesh2_poly_lon Mesh2_poly_lat" ;
Mesh2_poly_water_volume_2d:_FillValue = fillvalue ;
Mesh2_poly_water_volume_2d:valid_range = valid minimum, valid maximum ;
Mesh2_poly_water_volume_2d:grid_mapping = "crs"

Vertikal strukturiert

double Mesh2_poly_water_volume_3d(time,nMesh2_cell) ; \\ compressed dimension used
Mesh2_poly_water_volume_3d:standard_name = "???" ; \\ eventually not required
Mesh2_poly_water_volume_3d:long_name = "water volume above 2D mesh polygons, vertically structured" ;
Mesh2_poly_water_volume_3d:units = "m3" ;
Mesh2_poly_water_volume_3d:coordinates = "Mesh2_poly_lon Mesh2_poly_lat" ;
Mesh2_poly_water_volume_3d:_FillValue = fillvalue ;
Mesh2_poly_water_volume_3d:valid_range = valid minimum, valid maximum ;
Mesh2_poly_water_volume_3d:grid_mapping = "crs"

Aktuelle (zeitvariable) Topografie

Es werden nur die Angaben für zeitvariable Topografie gemacht. Bei stationärer Topografie entfällt die Dimension time.

Knoten

double Mesh2_node_depth(time,nMesh2_node) ;
Mesh2_node_depth:standard_name = "sea_floor_depth_below_geoid" ;
Mesh2_node_depth:long_name = "sea floor depth at 2D mesh nodes" ;
Mesh2_node_depth:units = "m" ;
Mesh2_node_depth:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_node_depth:_FillValue = fillvalue ;
Mesh2_node_depth:valid_range = valid minimum, valid maximum ;
Mesh2_node_depth:cell_methods = "nMesh2_node: point" \\ depth is pointwise
Mesh2_node_depth:grid_mapping = "crs"

Kanten

double Mesh2_edge_depth(time,nMesh2_edge) ;
Mesh2_edge_depth:standard_name = "sea_floor_depth_below_geoid" ;
Mesh2_edge_depth:long_name = "sea floor depth for 2D mesh edges" ;
Mesh2_edge_depth:units = "m" ;
Mesh2_edge_depth:coordinates = "Mesh2_edge_lon Mesh2_edge_lat" ;
Mesh2_edge_depth:_FillValue = fillvalue ;
Mesh2_edge_depth:valid_range = valid minimum, valid maximum ;
Mesh2_edge_depth:cell_methods = "nMesh2_edge: mean" ; \\ depth is constant along edge
Mesh2_edge_depth:grid_mapping = "crs"

Polygone

double Mesh2_poly_depth(time,nMesh2_poly) ;
Mesh2_poly_depth:standard_name = "sea_floor_depth_below_geoid" ;
Mesh2_poly_depth:long_name = "sea floor depth for 2D mesh polygons" ;
Mesh2_poly_depth:units = "m" ;
Mesh2_poly_depth:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_poly_depth:_FillValue = fillvalue ;
Mesh2_poly_depth:valid_range = valid minimum, valid maximum ;
Mesh2_poly_depth:cell_methods = "nMesh2_poly: mean" ; \\ depth is constant within polygon
Mesh2_poly_depth:grid_mapping = "crs"

Maximal zulässige Tiefe

  • Vollständig analog zu Aktuelle Tiefe vorgehen, jedoch ohne Dimension time.
  • Vorschlag für die Namensgebung:
    1. Knoten: "Mesh2_node_max_depth(nMesh2_node)" ;
    2. Kanten: "Mesh2_edge_max_depth(nMesh2_edge)" ;
    3. Polygone: "Mesh2_poly_max_depth(nMesh2_poly)" .

Daten ohne Tiefenabhängigkeit

Wasserstand

Typischer Weise liegt der Wasserstand entweder (punktweise) am Knoten oder konstant im Polygon vor.

Knoten

double Mesh2_node_water_level(time,nMesh2_node) ;
Mesh2_node_water_level:standard_name = "sea_surface_height_above_geoid" ;
Mesh2_node_water_level:long_name = "water level for 2D mesh nodes" ;
Mesh2_node_water_level:units = "m" ;
Mesh2_node_water_level:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_node_water_level:_FillValue = fillvalue ;
Mesh2_node_water_level:valid_range = valid minimum, valid maximum ;
Mesh2_node_water_level:cell_methods = "nMesh2_node: point" ;
Mesh2_node_water_level:grid_mapping = "crs" ;

Polygon

double Mesh2_poly_water_level(time,nMesh2_poly) ;
Mesh2_poly_water_level:standard_name = "sea_surface_height_above_geoid" ;
Mesh2_poly_water_level:long_name = "water level for 2D mesh polygons" ;
Mesh2_poly_water_level:units = "m" ;
Mesh2_poly_water_level:coordinates = "Mesh2_poly_lon Mesh2_poly_lat" ;
Mesh2_poly_water_level:_FillValue = fillvalue ;
Mesh2_poly_water_level:valid_range = valid minimum, valid maximum ;
Mesh2_poly_water_level:cell_methods = "nMesh2_poly: mean" ;
Mesh2_poly_water_level:grid_mapping = "crs" ;

Tiefenabhängige Daten

Tiefengemittelter Salzgehalt

Knoten

double Mesh2_node_salinity_2d(time,nMesh2_node) ;
Mesh2_node_salinity:standard_name = "sea_water_salinity" ;
Mesh2_node_salinity:long_name = "salinity for 2D mesh nodes, depth averaged" ;
Mesh2_node_salinity:units = "0.001" ;
Mesh2_node_salinity:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_node_salinity:_FillValue = fillvalue ;
Mesh2_node_salinity:valid_range = valid minimum, valid maximum ;
Mesh2_node_salinity:cell_methods = "length: ???" ; \\ pointwise depth averaged
Mesh2_node_salinity:grid_mapping = "crs" ;

Polygone

double Mesh2_poly_salinity_3d(time,nMesh2_poly) ;
Mesh2_poly_salinity:standard_name = "sea_water_salinity" ;
Mesh2_poly_salinity:long_name = "salinity for 2D mesh nodes, depth averaged" ;
Mesh2_poly_salinity:units = "0.001" ;
Mesh2_poly_salinity:coordinates = "Mesh2_node_lon Mesh2_node_lat" ;
Mesh2_poly_salinity:_FillValue = fillvalue ;
Mesh2_poly_salinity:valid_range = valid minimum, valid maximum ;
Mesh2_poly_salinity:cell_measures = "volume: Mesh2_poly_water_volume_2d" ; \\ volume averaged
Mesh2_poly_salinity:grid_mapping = "crs" ;


Strömungsgeschwindigkeit, x-Komponente (Code = 14)

double node_velocity_x(time,vedge) ;
node_velocity_x:standard_name = "sea_water_x_velocity" ; \\ or better eastward_sea_water_velocity
node_velocity_x:long_name = "current velocity in x-direction" ;
node_velocity_x:units = "m s-1" ;
node_velocity_x:coordinates = "node_long_name node_lon node_lat"
node_velocity_x:_FillValue = "fillvalue"
node_velocity_x:valid_range = "valid minimum, valid maximum"
node_velocity_x:cell_methods = "height: mean"
node_velocity_x:grid_mapping = "crs"

Strömungsgeschwindigkeit, y-Komponente (Code = 15)

double node_velocity_y(time,vedge) ;
node_velocity_y:standard_name = "sea_water_y_velocity" ; \\ or better northward_sea_water_velocity
... weitere Attribute analog zur x-Komponente der Strömungsgeschwindigkeit

Strömungsgeschwindigkeit, z-Komponente (Code = 1029)

double node_velocity_z(time,vedge) ;
node_velocity_z:standard_name = "upward_sea_water_velocity" ;
... weitere Attribute analog zur x-Komponente der Strömungsgeschwindigkeit

Schwebstoffgehalt, Gesamtmenge (Code = 7)

double node_suspended_matter(time,vedge) ;
node_suspended_matter:standard_name = "mass_concentration_of_suspended_matter_in_sea_water" ;
node_suspended_matter:long_name = "mass concentration of suspended sediments" ;
node_suspended_matter:units = "kg m-3" ;
node_suspended_matter:coordinates = "node_long_name node_lon node_lat"
node_suspended_matter:_FillValue = "fillvalue"
node_suspended_matter:valid_range = "valid minimum, valid maximum"
node_suspended_matter:cell_methods = "height: mean"
node_suspended_matter:grid_mapping = "crs"

Schwebstoffgehalt, Fraktionen (Code = 7)

double node_suspended_matter_classes(suspension_classes,time,vedge) ;
node_suspended_matter_classes:standard_name = "mass_concentration_of_suspended_matter_in_sea_water" ;
node_suspended_matter_classes:long_name = "mass concentration of suspended sediment fraction" ;
node_suspended_matter_classes:units = "kg m-3" ;
node_suspended_matter_classes:coordinates = "node_long_name node_lon node_lat"
node_suspended_matter_classes:_FillValue = "fillvalue"
node_suspended_matter_classes:valid_range = "valid minimum, valid maximum"
node_suspended_matter_classes:cell_methods = "height: mean"
node_suspended_matter_classes:grid_mapping = "crs"

Hilfsfelder

Kompression von height und node

integer vedge(vedge) ;
vedge:compress="height node"

Bezeichnung der Schwebstoffklassen

char suspended_matter_classes_long_name(suspension_classes,strlen1) ;
suspended_matter_classes_long_name:long_name = "long name of suspension class"

Anmerkungen, Fragen

  • Datei ist vollständig CF-konform - keine Erweiterungen erforderlich!

zurück zu NetCDF


Strukturübersicht